Optimizing a dia-PASEF acquisition and data analysis for non-depleted plasma for rare disease research

Ines Metatla¹, Cerina Chhuon¹, Kévin Roger¹, Antonietta Tarallo², Giancarlo Parenti², Pierre-Olivier Schmit³, Manuel Chapelle³, Ida Chiara Guerrera¹

¹Faculty of Medecine, University of Paris, Paris, France; ²Telethon Institute of Genetics and Medical Science Federico II University of Naples, Pozzuoli, Italy; ³Bruker Daltonique S.A., Wissembourg, France

Introduction

The accessibility of non-depleted plasma makes it an ideal fluid for clinical proteomics studies, despite its huge dynamic range and the low abundance of organ-specific secretions. We worked with **non-depleted plasma** samples to minimize the pre-analytical variability, reduce the costs and therefore increase the number of patients analyzed.

AIMS

- To compare dda-PASEF[®] and **dia-PASEF[®]** for non-depleted plasma samples
- To compare different **DIA-NN based pipelines** dia-PASEF[®] data analysis
- the optimized pipelines in two case studies of **plasma** To test proteomics in clinical research in rare diseases

Methods

Plasma samples from 16 healthy adult donors were used for optimization. Two plasma sample cohorts from 2 separate clinical project on rare disease were used: Rare disease 1 and 2 (RD1and RD2). Samples (1ul of plasma) were digested with trypsin using STRAP columns, separated by nano-HPLC (nanoElute, Bruker Daltonics) on a pulled emitter column (IonOpticks, Australia) using a 40 min gradient. Peptides were analyzed on a timsTOF Pro[™] instrument (Bruker Daltonics) operated both in PASEF and dia-PASEF modes.

Results

- Stratification of patients according to severity

leakage pertinent to the disease.

groups identified and quantified, allowing the identification of proteins from tissue