IMSC 2022

Anti-inflammatory effects of hop bitter acids in dentritic cells revealed by MRMS metabolomic studies

mass spectrometry (LC-MS/MS).

Emanuela Salviati¹, Eduardo Sommella¹, Giulio Verna¹, Marcello Chieppa², Matthias Witt³, Pietro Campiglia¹

¹University of Salerno, Department of Pharmacy, Fisciano (SA), Italy ² National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy ³Bruker Daltonics GmbH & Co. KG., Bremen,

As an alternative to LC-MS/MS, direct infusion magnetic resonance mass spectrometry (DI-MRMS) or flow injection (FIA) MRMS delivers short analysis time for sample screening and features unmatched mass accuracy, resolution, sensitivity, and isotopic fine structure. Hence, the FIA- or DI-MRMS workflows provide a higher throughput in metabolic profiling compared to LC-MS methods [2]. In this study, MRMS was used to highlight the metabolic changes in dendritic cells stimulated with lipopolysaccharide (LPS) and cotreated with a Hop derived fraction rich in beta acids and prenylflavonoids and compared their effect with the flavonol quercetin.

Figure 2: PLS-DA score plot (A) and Heat map (B) of statistically relevant (ANOVA followed by a Tukey's post hoc, p < 0.05) DCs metabolites modulated by LPS, HOP C, and quercetin. Color changes reflect normalized intensity.

Introduction

Germany

Inflammation is a complex, evolutionarily conserved process, that involves immune and non-immune cells in the host for protection from harmful stimuli. Metabolic changes occur in macrophages and dendritic cells (DCs) leading to pro or antiinflammatory phenotypes. In this regard, the growing field of immunometabolism aims to target specific metabolic pathways to modulate inflammation, and natural compounds are more and more used for preventive action [1]. To understand the metabolic shift toward antiinflammatory phenotypes, metabolomics has emerged as leading approach. The metabolome profiling is

Methods

- NanoMate coupled to a solariX XR
- 32 scans added
- 2M data points
- Positive and negative ion mode
- Five replicates of each sample
- Processing with MetaboScape using HMDB and LipidMAPS
- Metaboanalyst 5.0 for PCA and

chromatography coupled to tandem

usually carried out by liquid

PLS-DA statistical analysis

The supernatants were dried under nitrogen and reconstituted in 100 μ L of ACN/H₂O (70:30) + 0.1% HCOOH (*v*/*v*) before MRMS aXelerate analysis.

Figure 3: Normalized intensity of altered metabolites involved in metabolic reprogramming of LPS-DCs and modulated by HOP C and quercetin treatments: (A) Pentose phosphate pathway intermediates, (B) TCA cycle and citrulline, (C) Purine/Pyrimidines and Nucleotides.

Results

DCs stimulated with LPS pre-exposed to $25 \,\mu$ g/mL of HOP B and C fractions showed reduced production of several inflammatory cytokines (IL-6, IL-1α, IL- 1β and TNF). The fraction C was significantly more effective than the fraction B. Based on the results of inflammatory cytokine and qPCR measurements, the DCs samples were divided into four groups: control (CTRL), LPS stimulated DCs (LPS), LPS-DCs plus HOP C (LPS+H) and plus quercetin (LPS+Q). As can be observed in the PLS-DA score plots in Figure 2A, metabolites in the different DCs groups were separated into distinct clusters. The metabolite abundance variations

regulation of the oxidative and nonoxidative branch of pentose phosphate pathway, regulates the argininecitrulline and arginine-succinate shunt, and normalizes the nucleotide metabolism, differently from quercetin. These results suggest that HOP C fraction is effective to impair the inflammatory response by regulating the metabolic reprogramming of DCs toward anti-inflammatory and resting conditions.

Conclusions

 MRMS aXelerate is a fast and reliable method for metabolome profiling.

Figure 1a: Sample preparation and metabolite extraction.

Figure 1b: MRMS aXelerate workflow using nESI.

References

[1] R. M. Loftus et al., J. Biol. Chem., 2016, 291, 1-10.
[2] E. Sommella et al., J. Pharm. Biomed. Anal., 2021, 195, 113865.
[3] C. M. Krawczyk et al., Blood, 2010, 115, 4742-4749.

induced by the LPS stimulation and after the two treatments were visualized by a heatmap shown in Figure 2B.

This untargeted metabolomics study showed that quercetin and HOP C induced changed are segregated in two independent pathways. LPS-activated DCs are characterized by anaerobic glycolysis and a pro-inflammatory phenotype [3]. As shown in the Whisker box plots in Figure 3, the preventive administration of HOP C acts through a MRMS aXelerate allows to take the snapshot of metabolic changes in BMDCs stimulated by LPS and cotreated with a Hop bitter acids and prenylflavonoids fraction.

Highlights the potential role of natural compounds in targeting immunometabolism treatment of inflammatory diseases.

MRMS Metabolomics

© 2022 Bruker

For Research Use Only. Not for use in diagnostic procedures.

Innovation with Integrity