Statistical approach for the analysis of contaminants of emerging concern (CECs) in complex water samples during treatment processes

Zsuzsanna Varga¹; Edith Nicol¹; Yao Xu^{2,3}; Stéphane Bouchonnet¹; Marc Lavielle^{2,3 1}Laboratory of Molecular Chemistry, CNRS, École Polytechnique, Palaiseau, France; ²Inria, Saclay, France; ³Center for Applied Mathematics, École polytechnique, Palaiseau, France

Introduction

Non-targeted analysis

tentative identification

transformation products

Challenges:

Subjectivity (sample preparation, measurement, data analysis) Analysis of trace amounts in complex matrices Uncertainties related to the identification and quantitation of micropollutants

Statistical approach to monitor chemical changes

Results: Examples of SPIX abilities on water treatment monitoring

Kinetics of maprotiline degradation in wastewater matrix

- decrease of Maprotiline: **exponential decay**, modeled with a **good fitting** by the software and high statistical relevance
- maximum number of transformation products, get an overview of the occurring changes.
- SPIX suggested 24 peaks (R² > 0,9), 22 of them were tentatively assessed as maprotiline-related compounds, export data
- reagents, intermediates, and products were revealed, by optimal kinetic modeling

3

2 Methods Experimental conditions				
Contaminant	Category	Conc.	Matrix	Treat
Maprotiline	Antidepressant drug	5 ppm	Secondary treated wastewater	H ₂ O
Acetamiprid	Neonicotinoid insecticide	40 ppb	Simulated river water (20 ppm fulvic acid)	L irrad

Acetamiprid in low concentrations in simulated river water

- aim: lower the limit of detection without pre-concentration using direct infusion mass spectrometry
- acetamiprid and possible photoproducts going through statistically relevant changes between the two conditions, detected by SPIX at **1% intensity of** the base peak
- quick and reliable way to identify the treatment efficiency and the **persistence** of transformation-products

Analysis

- direct infusion mass spectrometry
- Bruker SolarixXR FT-ICR 9.4 T instrument (**sub-ppm** accuracy)
- electrospray ionization source
- in-house developed freeware (SPIX): follow statistically relevant changes in complex mixtures and to model the kinetics of the transformation products

Conclusion

SPIX free software:

- identification of peaks in complex mixtures
- variations of peaks, even at low abundances
- an approach based on statistical relevance
- tackle subjectivity
- kinetic modeling
- export statistical description in .csv format

Acknowledgements

SPIX is the result of a collaboration between the laboratory of molecular chemistry (LCM) of Ecole Polytechnique and Xpop, an Inria-Ecole Polytechnique joint team specialized in the development of statistical methodologies for modelling complex phenomena.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765860.

