

BRUKER XRD ANWENDERTREFFEN 2022

MEASUREMENT OF COATING THICKNESS WITH X-RAY DIFFRACTION

M. Witte

SALZGITTER MANNESMANN FORSCHUNG

A Member of the Salzgitter Group

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide Layers on Steel
- Messung von Zink-Texturen

DIVERSIFIED PRODUCT PORTFOLIO

Salzgitter Group

GROUP STRUCTURE AND KEY DATA FY 2021

Salzgitter Group

All data about employees as per 12/31

THE IDEA BEHIND SALCOS® Salzgitter Low CO₂ Steelmaking

- / Our approach: Carbon Direct Avoidance (CDA)
- / SALCOS® maps out the route to virtually carbon neutral steel production
- / Hydrogen as a reduction agent will replace carbon
- / Transformation process is planned **in three stages**
- / Integration of the new facilities in the existing steelworks
- / Same production capacity
- / By 2033: reduction of more than 95 % targeted in carbon emissions

PART OF THE SALCOS[®] ROUTE ALREADY EXISTS

Comparison of the conventional and the future production technology

Salzgitter AG: Standard Presentation SALCOS® FORSCHUNG

Nember of the Selznitter Grou

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide layers on steel

XRD – THICKNESS MEASUREMENT Motivation

Nano scale

- X-ray Reflectivty (XRR), Grazing Incidence X-ray Diffraction (GIXRD) Grazing-incidence Small-Angle X-ray Scattering (GISAXS)
 - Highly collimated beams, high intensity
 - \circ layer thickness < 1 μ m

Micro scale

- X-ray Fluoresence (XRF 0.01-75 μm)
 - \circ Cannot differenciate polymorphs (e.g. Fe₂O₃ or Fe₃O₄)

Macro scale

- X-ray Transmission
 - \circ High energy radiation, precision ± 500 nm

ightarrow How to measure coatings of 3-15 µm without XRF non-destructively?

Available Equipment

- Bruker D8 Discover
- Vantec2000 area detector
- PolyCap with $Fe_{K\alpha}$ -radiation, no monochromator

- Intensity of Fe-reflex is reduced by absorption from Zn layer.
- From the Fe intensity with $I_{Fe,Zn}$ and without $I_{Fe,0}$ Zn the layer thickness can be determined:

$$I_{Fe,Zn} = I_{Fe,0} \cdot \exp(-\mu_{Zn} x_{Zn})$$

• The length of the x-ray path trough the Zn layer is:

$$x_{Zn} = d \cdot \left(\frac{1}{\sin(\theta_0)} + \frac{1}{\sin(\theta_{Fe} - \theta_0)}\right)$$
$$\rightarrow d = \frac{-\ln\left(\frac{I_{Fe,Zn}}{I_{Fe,0}}\right)}{\mu_{Zn}\left(\frac{1}{\sin(\theta_0)} + \frac{1}{\sin(\theta_{Fe} - \theta_0)}\right)}$$

Fe-K α radiation, μ_{Zn} = 770 cm⁻¹

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide Layers on Steel

XRD-THICKNESS MAP

Zn Layer Mapping

- Steel is coated with 2.5-20 µm Zn for corrosion protection. ٠
- With a suitable sample stage and beam size the thickness distribution ٠ of an area can be mapped.
- Measurement of 231 points on 40 mm x 60 mm with 3 mm steps ٠
- Reference thickness = 3 µm (weight) ٠

Layer Thickness [μ m] aver 7 c 9

40

20

Y-Position [mm]

Scatter due to curvature .

30

20

10

X-Position [mm]

0

Deviation of Fe₁₁₀ peak position

0

-20

-10

Thickness distribution

XRD-THICKNESS MAP Sample height correction

Automated height correction with Video-Alignment

30

XRD - THICKNESS MEASUREMENT Comparison with Glow Discharge-Optical Emission Spectroscopy (GD-OES)

Concentration [wt.-%]

100

90-

80-

70-

60-

50-

40-

30-

20-

10-

0

Zn

[Lötter, S.J., et al. (2015). J. Southern African Inst. Mining and Metallurgy, 115(10), 966–971.]

GD-OES method

Fe 2

Fe 2

Depth[µm]

- XRD thickness results fit well to GD-OES and reference values.
- Measurements for 10 & 11 μ m with Fe₂₀₀ reflex

Application - Failure on Zn coating

XRD Anwendertreffen 2022/ SZMF, Witte / 09/20/2022

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide Layers on Steel

XRD - THICKNESS MEASUREMENT Multilayer - Standard

- Reference Standard with 0.88 µm Cr / 7.3 µm Ni on Fe-Substrate
- Cr layer thickness from comparison with bulk Cr sample:

$$I_{Cr} = I_{Cr,0} \cdot (1 - \exp(-\mu_{Cr} x_{Cr}))$$
$$\rightarrow d_{Cr} = \frac{\ln\left(1 - \frac{I_{Cr}}{I_{Cr,0}}\right)}{\mu_{Cr}(\frac{1}{\sin(\theta_0)} + \frac{1}{\sin(\theta_{Cr} - \theta_0)})}$$

• Removal of absorption from Fe₂₁₁ by Cr layer:

$$I_{Fe,cor} = I_{Fe} \cdot \exp(\mu_{Cr} x_{Cr})$$

• Ni layer thickness:

Multilayer - Standard

- Cr causes strong X-ray fluorescence with Fe-Kα radiation.
 → Low Peak-to-Background ratio
- Overlap of Fe₂₁₁ and Cr₂₁₁ peaks
 → Peak deconvolution
- No measurement of Fe substrate without Cr/Ni layer possible

 → Use of suitable reference sample (low alloyed hot strip)
 → Intensity differences due to texture
- Same problem occurs with bulk Cr reference sample.

Multilayer - Standard - Texture corrections

 ${\rm Fe}_{\rm 211}$ pole figure of reference sample

Fe₂₁₁ pole figure of standard substrate

(220)

- Intensity for thickness measurement is from the pole figure center.
- Intensity can be scaled with pole figure values to the intensity of samples with random texture.
- Since an area dector is used a line section of the pole figures has to be averaged.

Multilayer - Standard - Texture corrections

After texture correction

- Excellent agreement for Ni layer thickness
- Poor agreement for Cr layer thickess
 - X-ray fluorescence
 - Texture correction not possible due to low intensity and peak overlap

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide Layers on Steel

XRD – THICKNESS MEASUREMENT Nitride/Oxide layer

- Nitriding is used for surface hardening of steel.
- Oxide layer for corrosion resistance
- ~1.2 µm Oxide layer / ~ 11.5 µm Fe-nitride layer / steel substrate
- Only diffraction methods (XRD, EBSD) can discriminate γ -Fe4N and ϵ -Fe3N

Nitride/Oxide layer

Fe3N and Fe4N layers are not well separated
 → Treat them as one layer:

 $\mu_{\text{FexN}} = 0.5^{*}(\mu_{\text{Fe3N}} + \mu_{\text{Fe4N}}) = 0.5^{*}(537 + 494) \text{ cm}^{-1} = 516 \text{ cm}^{-1}$

• With the same approach as before the layer thickness can be determined.

- With well separated layers and suitable reference materials Fe3N and Fe4N layer thicknesses could be measured with XRD.
 - This would not be possible with XRF.

Summary

- XRD is a suitable method to measure layer thicknesses by X-ray absorption!
- N-1 reference materials are necessary for N layers.
 - \circ $\;$ If possible use substrate after layer removal.
- Corrections
 - o Texture differences between layer and reference material
 - o Sample height differences for thickness maps of non flat surfaces
- Advantages
 - \circ Differentiation of polymorph layers (e.g. Fe3N/Fe4N or Fe_xO_y) possible
 - o Extension of XRD measurement capabilities
 - o Non-destructive

Introduction

• Salzgitter AG

XRD Thickness Measurement

- Motivation & Method
- Zn Coating on Steel
- Fe/Ni/Cr Standard
- Fe Nitride and Oxide Layers on Steel
- Messung von Zink-Texturen

ELEKTROLYTISCHE VERZINKUNG SZFG

Layout

4	5	8 9 8 10 0	11 8 13 12 11 15 19 18	20 22 21 23
In der Eloverzinkung wird Kalt- feinblech in bis zu 17 galvani- schen Zellen elektrolytisch ver-			14 8 9 8 8	
zinkt.		16		
The electro-zinc coating line				

17

4

The processes cold-rolled sheet steel in up to 17 electroplating cells.

)	Abhaspel	(13)	Aktivierung	1	Pay-off reel	(13)	Activation
)	Schopfschere	(14)	Phosphatierung	2	Cropping shear	(14)	Phosphor treatment
)	Schweißmaschine	(15)	Passivierung (chromfrei)	3	Welding machine	(15)	Passivation (chrom-free)
)	Einlaufspeicher	(16)	Auslaufspeicher	(4)	Entry loop accumulator	(16)	Exit loop accumulator
)	Bandvorreinigung	(17)	Inspektionsstand	(5)	Strip pretreatment	(17)	Inspection station
)	Streckrichter	(18)	Oberflächeninspektions-	6	Tension leveller	(18)	Surface inspection system
)	Elektrolytische Reinigung		system	(7)	Electrolytic cleaning	(19)	Roughness measurement
0	Spüle	(19)	Rauheitsmessung	8	Rinsing tank	20	Edge trimmer
0	Beize	20	Besäumschere	9	Pickling tank	21)	Electrostatic oiler
)	Elektrolytische Verzinkung	(21)	Elektrostatische Ölmaschine	(10)	Electro-zinc coating	22	Oiling gauge
	mit 17 Zellen	(22)	Ölauflagenmessung		with 17 cells	23	Tension reel
D	Trockner	23	Aufhaspel	(11)	Dryer		
2	Zinkschichtdickenmessung	<u> </u>		12	Zinc coating thickness		
					control		

Bandbreitenbereich	900 - 1.850
Banddickenbereich	0,5 - 2,5 mm
Geschwindigkeit	max. 180 m
Bundgewicht	max. 32 t
Stromstärke	50 kA/Zelle
Gleichrichterkapazität	850 kA
Anzahl Zellen	17
Zinkschichtdickenbereich	2,5 - 15 µm
	(ein- und b

900 - 1.850 mm
0,5 - 2,5 mm
max. 180 m/min
max. 32 t
50 kA/Zelle
850 kA
17
2,5 - 15 µm
(ein- und beidseitig)
38.000 t/Mon.

Strip width range	900 - 1.850 mm
Strip thickness range	0,5 - 2,5 mm
Speed	max. 180 m/min
Coil weight	max. 32 t
Current intensity	50 kA/Zelle
Rectifier capacity	850 kA
Number of cells	17
Coating range	2,5 - 15 µm
	(one-side and both-side coating)
Capacity	38.000 t/mo

XRD Anwendertreffen 2022/ SZMF, Witte / 09/20/2022

Eloverzinkung - Anlagenplan Electro-zinc coating line - Layout

ZINK - TEXTUR Messschema

Welche Reflexe eignen sich für Texturmessung?

- {100}-Reflex ungeeignet (Überlappung mit Kβ-{101})
- {103}- und {210} ungeeignet, da zu dicht zusammen (Peakverbreiterung bei höheren Kippwinkeln)
- {212}-Reflex ungeeignet (Überlappung mit {211}-Fe-Reflexe)
- Bleiben: {002}, {101}, {102} und {004}, wobei {002} und {004} äquivalente Information liefern.

Röntgendiffraktometer

- Bruker D8 Discover mit Vantec2000 Flächendetektor
- Fe-Kα Strahlung mit Mn-Kβ-Filter

Messschema

- Equal Area, 2.5° Auflösung
- 2 Detektorpositionen für 4 Polfiguren
- 6 s Messzeit pro Frame
- ~100 min pro Probe

ZINK – TEXTUR Summary

Proben

- Laborproben (ELViS)
- 5 unterschiedliche Elektrolytzusammensetzungen.
 - Ziel: Reduktion Energieverbrauch durch höhere Elektrolyt-Leitfähigkeit
- Optischer Unterschied Proben N1 & N19 zu restlichen Proben

Texturberechnung

- Mit Matlab Toolbox MTEX <u>MTEX Toolbox | MTEX (mtex-toolbox.github.io)</u>
- Berechnung der Orientierungsverteilungsfunktion (ODF) und von Texturfaseranteilen

ZINK – TEXTUR Experimentelle ODFs

FORSCHUNG A Nember of the Salzgitter Group

- Deutlicher Texturunterschied ٠
- N1: Scharfe Basaltextur ٠
- N13: Schwache Texturfasern ٠

Typische Kristallorientierungen von Zink

XRD Anwendertreffen 2022/ SZMF, Witte / 09/20/2022*) Luque, A. et al., W. A., Mod. Sim. Mat. Sci. Eng., **2013**, 21, 045010. © 2022 Salzgitter AG / 29

XRD Anwendertreffen 2022/ SZMF, Witte / 09/20/2022*) Luque, A. et al., W. A., Mod. Sim. Mat. Sci. Eng., **2013**, 21, 045010. © 2022 Salzgitter AG / 30

ZINK - TEXTUR Texturfasern

- Textur-Faseranteile können aus ODF berechnet werden.
- Dabei muss die Multiplizität der Faser berücksichtigt werden:

Faser BN	Multiplizität
<0001>	2
<1010>	6
<1012>	12
<1213>	12

→ Basal-Faser führt zu glatter
 Oberfläche und höherer
 Reflektivität

SALZGITTER MANNESMANN FORSCHUNG

XRD – MESSUNG ZN-TEXTUR Zusammenfassung

- Bei Textur-Messungen an Beschichtungen muss auf Überlagerung mit Röntgenreflexen des Substrats geachtet werden.
- Für eine korrekte Quantifizierung von Texturanteilen muss die Multiplizität von Orientierungen und Texturfasern berücksichtigt werden.
- Die Textur einer Zn-Beschichtung beeinflusst die Oberflächentopographie, sowie
 - o Elastische / Plastische Eigenschaften
 - o Rissanfälligkeit
 - o Korrosionsbeständigkeit
 - o ...
- Veröffentlichung
 - Schichtdickenmessung: Eingereicht in Advances in X-Ray Analysis
 - Zn-Textur (ohne Simulationsteil): Debeaux, M.; Witte, M.; Koll, T. "Influences of electrolyte composition and temperature on energy demand and zinc structure during electro-galvanizing", 12th Int. Conf. Zn & Zn Alloy Coated Steel Sheet, 2021, ASMET.

THANKS FOR YOUR ATTENTION!

SALZGITTER MANNESMANN FORSCHUNG

A Member of the Salzgitter Group