

Beleuchtung der dunklen Matrix

CHNO-Zusammensetzung für semi-quantitative Auswertungen

<u>Michael Breuckmann (FH Münster)</u> Prof. Dr. Ursula E. A. Fittschen (TU Clausthal) Prof. Dr. Martin Kreyenschmidt (FH Münster)

Einführung

Kunststoffproben, variierende Analyten- und Matrixzusammensetzungen, Einzelelement-Kalibriermaterialien: Al, Zn, Br, Cd, Ba, Pb

Einführung

Sekundärbrennstoff-Proben (Fluff), stark heterogenes Material, hoher Kunststoffanteil

Einführung RFA-Quantifizierung und Streuung

 Standardfreie RFA-Quantifizierungen benötigen die vollständige Matrix-Zusammensetzung

$$\boldsymbol{w_i} = a_0 + a_1 \cdot I_i \cdot \left(1 + \sum_{i \neq j} \alpha_{i,j} \cdot \boldsymbol{w_j}\right)$$

• Gestreute **Röhrenstrahlung** kann als "**Fingerabdruck**" der Probenzusammensetzung angesehen und genutzt werden!

$$I = I_o e^{-\mu_{CP} \cdot x}$$
$$\mu_{CP} = \sum_i \tau_i + \sigma_i = f(Z_i, w_i, E)$$

w_i Gesuchter Elementmassenanteil

- a_0, a_1 Kalibrierkoeffizienten
 - Linienintensität

 I_i

- $\alpha_{i,j}$ Einflussparameter zwischen Elementen
- *w_i* Elementmassenanteil *aller* anderen Elemente

Massenabsorption ist abhängig von der Probenzusammensetzung und betrachteten Energie

Einführung RFA-Quantifizierung und Streuung

 Standardfreie RFA-Quantifizierungen benötigen die vollständige Matrix-Zusammensetzung

$$\boldsymbol{w_i} = a_0 + a_1 \cdot I_i \cdot \left(1 + \sum_{i \neq j} \alpha_{i,j} \cdot \boldsymbol{w_j}\right)$$

 Gestreute Röhrenstrahlung kann als "Fingerabdruck" der Probenzusammensetzung angesehen und genutzt werden!

$$I = I_o e^{-\mu_{CP} \cdot x}$$
$$\mu_{CP} = \sum_i \tau_i + \sigma_i = f(Z_i, w_i, E)$$

Querschnitte der Compton- und Rayleigh-Streuung nach Elam et al. über *xraylib*

Einführung RFA-Quantifizierung und Streuung

 Standardfreie RFA-Quantifizierungen benötigen die vollständige Matrix-Zusammensetzung

$$\boldsymbol{w_i} = a_0 + a_1 \cdot I_i \cdot \left(1 + \sum_{i \neq j} \alpha_{i,j} \cdot \boldsymbol{w_j}\right)$$

• Gestreute Röhrenstrahlung kann als "Fingerabdruck" der Probenzusammensetzung angesehen und genutzt werden!

$$I = I_o e^{-\mu_{CP} \cdot x}$$
$$\mu_{CP} = \sum_i \tau_i + \sigma_i = f(Z_i, w_i, E)$$

WD-RFA-Streuspektren von Proben gleicher Masse

9

Einführung

Methodik

Polymere Partial Least Squares-Modellierung der CHNO-Anteile

Polymere

Partial Least Squares-Modellierung der CHNO-Anteile

			wavg. RMSE = $\sum_{i=1}^{4} \left(\text{RMSE}_{i} \frac{y_{i}}{\sum_{k=1}^{4} \overline{y}_{k}} \right)$		
Spektrale Auflösung	Element	Trainingsdaten (wt.%)		Testdaten (wt.%)	
		RMSE	wavg. RMSE	RMSE	wavg. RMSE
a) Gering	С	1.8	1.6	1.8	1.6
	Н	0.22		0.3	
	Ν	2.4		2.4	
	0	1.7		1.3	
b) Mittel	С	1.2	1.1	2.0	1.9
	Н	0.17		0.4	
	Ν	1.4		2.5	
	0	1.2		2.0	
c) Hoch	С	1.3	1.4	2.0	1.9
	Н	0.25		0.54	
	Ν	3.2		2.6	
	0	2.2		2.0	

Breuckmann et al. J. Anal. At. Spectrom., 2022, 37, 861-869

Streuwinkeleinfluss

Monte Carlo-Simulationen (XMI-MSIM)

Parameter-Optimierung, Einfallswinkel: 40°, Detektionswinkel: 60°

total CHNO

Parameter-Optimierung, Einfallswinkel: 40°, Detektionswinkel: 60°

Wiederfindungen

Fehlerbalken für die Standardabweichung der Bootstrap-Proben

FH MÜNSTER

University of Applied Sciences

Streuwinkelabhängige Modellbeurteilung

R² des PLS-bagging zeigt keine starke Abhängigkeit vom Streuwinkel. RMSE des PLS-bagging zeigt keine starke Abhängigkeit vom Streuwinkeln.

Sekundärbrennstoffe (SBS)

Brennwert

Probenvorbereitung

Mikroskopie

Fluff-Material

"Kurzfaser"

Faserschlamm

Ringversuch SRF19XRF

—

Sekundärbrennstoffe Präparation Proben SRF-A: kommunaler Abfall SRF-B: gewerblicher Abfall SRF-C: kommunaler Klärschlamm

- Analyten: Al, Sb, As, Br, Cd, Ca, Cl, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, P, K, Si, Na, S, TI, Sn, Ti, V, Zn
- 25 internationale Labors

TU Claustha

Sekundärbrennstoffe CHNO-Kalibrierung

Multivariate CHNO-Kalibrierung (PLS-bagging)

Sekundärbrennstoffe CHNO-Kalibrierung

Multivariate CHNO-Kalibrierung (PLS-bagging)

Element-Wiederfindungen

Major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti)

Trace elements (As, Br, Cd, Cl, Co, Cr, Cu, Mo, Mn, Ni, Pb, S, Sb, Sn, Tl, V, Zn)

Analytical method quantitative semi-quantitative (others) MultiXQuant

MultiXQuant

(*diese Arbeit*) weist als semiquantitative Methode die geringsten Abweichungen zu Referenzlabors auf.

Brennwert

WD-RFA-Spektren von 247 SBS-Proben (inkl. Replikate, S8 Tiger)

FH MÜNSTER University of Applied Sciences

Sekundärbrennstoffe

Wiederfindungen der Brennwerte

Zusammenfassung

- CHNO-Matrixzusammensetzung ist aus der Anodenstreuung bestimmbar
- CHNO-Matrixangabe führt zu verbesserten semi-quantitativen Ergebnissen
- Kombinationsmethode MultiXQuant:

Optimierte Elementbestimmung in polymeren Materialien &

Brennwertbestimmung aus derselben Messung

Danke an

Team Kreyenschmidt, Team Fittschen, WESSLING GmbH

Danke an

Team Kreyenschmidt, Team Fittschen, WESSLING GmbH

Beleuchtung der dunklen Matrix

CHNO-Zusammensetzung für semi-quantitative Auswertungen

<u>Michael Breuckmann (FH Münster)</u> Prof. Dr. Ursula E. A. Fittschen (TU Clausthal) Prof. Dr. Martin Kreyenschmidt (FH Münster)

33

V. Panchuk et al., Anal. Chim. Acta, 2018, 1040, 19-32

→ PLS scores describe the relevant parts of spectra AND have maximum correlation with target concentrations Y

Т

U

РТ

m

QT

PLS approach

 $X = T P^T + E$

 $Y = U Q^T + F$

=

Х

Y

Otto, Chemometrics, 2017

Einführung Chemometrics: Partial Least Squares (PLS) Modeling

Spectrum of the 1st sample

- Spectra can be represented as a matrix **X**
- Multiple Linear Regression: Y = X B
- PLS: Matrix decomposition into scores (*T*, *U*) and loadings (P^T , Q^T)

F

Ensemble-Modell als Bootstrap AGGregatING (bagging)

Polymers CHNO: Partial Least Squares Modeling

Cross-validation (CV) employed to find optimal number of PLS components (2/3 of samples used for CV)

Regression coefficients **B** reveal energies that are contribute to modeled CHNO concentrations

Breuckmann et al. J. Anal. At. Spectrom., 2022, 37, 861-869

Polymers CHNO: Partial Least Squares Modeling

- How is this model robust?
- Various CHNO compositions may result in similar MAC...
- However, PLS model is able to resolve concentration differences

CHNO concentrations and corresponding mean mass absorption coefficients (17-24 keV), CHNO predictions for low spectral resolution

Breuckmann et al. J. Anal. At. Spectrom., 2022, 37, 861-869

◙ ♥़⊕ ▯ּ ₽ ◼ ≥ # ■

Monte Carlo simulations

Pd-K scattering series

Element-Wiederfindungen

Einfluss der Matrixangabe

Hauptelemente: AI, Ca, Fe, K, Mg, Na, P, S, Si, Ti

Spurenelemente: As, Br, Cd, Cl, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sn, Tl, V

Einfluss der Matrixangabe

Optimale Elementauswahl für PLS-bagging: Br, Cl, Cr, S

Brennwert

- Rh scattering signals have high correlations with calorific value
- \rightarrow Analysis of calorific value (CV)

CV (MJ/kg)

Sekundärbrennstoffe

