Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

Bruker Nano Analytics, Berlin, Germany Webinar, June 15, 2017

Innovation with Integrity

Presenters

Samuel Scheller

Sr. Product Manager, Micro-XRF & Automated Mineralogy Bruker Nano Analytics, Berlin, Germany

Gerda Gloy

Application Specialist, Natural Resources Bruker Pty Ltd, Brisbane, Australia

Overview

- Introduction to Micro-XRF
- What is AMICS
- Synthetic Spectra
- Spectrum Tree
- Demonstration
- Conclusion
- Questions

The M4 Tornado Main advantages

- Rectangular chamber design which accommodates large samples of up to 200 x 160 x 120 mm(WxDxH)
- Pump down <2min allowing detection to Na
- Three cameras assist with sample view and positioning
- Fast 100 mm/s stage with and 4 µm resolution, mouse-controlled and autofocus
- Capillary optics < 20 μm spot size at Mo Kα and high excitation intensity
- Dual SDD in 30 or 60 mm² with < 145 eV @ Mn Ka

The M4 Tornado Main advantages

Little/no sample preparation

Estimated detection limits Electron excitation vs. photon excitation

Estimated detection limits Electron excitation vs. photon excitation

Element detection M4 Overview

	I	П	Ша	IVa	Va	VIa	VПа		VIIIa		Ia	IIa	Ш	ĪV	V	VI	VП	VIII
1	¹ H																	² He
2	3 Li	4 Be											5 B	6 C	7 7 N	8	9 F	¹⁰ Ne
3	¹¹ Na	12 Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
 4	¹⁹ K	²⁰ Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	31 Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	36 K r
5	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	⁴⁹ In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
6	⁵⁵ Cs	⁵⁶ Ba	^{57*} La	72 Hf	⁷³ Ta	⁷⁴ W	75 Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	80 Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	86 Rn
7	87 Fr	⁸⁸ Ra	89** Ac	¹⁰⁴ (Ku)	¹⁰⁵ (Ns)													
					*Lantl	ianide												
				6	58 Ce	⁵⁹ Pr	⁶⁰ Nd	Pm	Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu
					**Akti	nide	00	02	04	05	0.0	07	0.0	00	100	101	102	102
				7	Th	Pa	92 U	⁹³ Np	Pu	⁹⁵ Am	Cm	Bk	⁹⁸ Cf	Es	Fm	Md	No	Lr

Not available Not yet possible Only in vacuum or in He atmosphere In air

X-ray Interaction with sample Information depth

- Penetration depth: the depth that can still be excited
- Information depth: the depth from which fluorescence X-rays can still reach the detector

X-ray Interaction with sample Example

Interaction with the sample Scattering

- Inelastic scattering (Compton)
- Elastic Scattering (Rayleigh)
- Bragg Diffraction scattering of X-rays from a crystal lattice. The position of this detected interference will depend on the orientation of the crystal and the angle of the detector

Advanced Micro-XRF Electron vs. Photon excitation

	Electron	Photon
Detection	I	EDS
Detection limit	100 ppm	1 ppm**
Resolution	nm	> 20 µm
Optimal excitation	Z < Ca	Z > Ca
Highest line	Fe (15 kV) - Rb (30 kV)	Ce, Nd @ ~ 40 keV
Lowes Z	Be (Li)	Na (N)
Information depth	nm - < 5 μm	µm-cm **
Measurement artefacts	bremsstrahlung	Compton, Rayleigh, Bragg**
Scan mode	beam/sample	sample
Sample visualization	fast -SE/BSE	slow -total intensity

X-ray analysis - µXRF-based vs. SEMbased

µXRF-based

Advantage

- No vacuum required
- Little sample preparation
- Large sample size
- Trace element sensitive (better detection limit)
- Higher excitation energy

Limitation

- Rel. large spot size / interaction volume
- Currently no light element detection below Na
- Spectrum artefacts

SEM-bassed

Advantage

- small interaction volume -> high resolution
- Light element detection

Limitation

- Vacuum required
- Sample preparation
- Rel. small sample size

What is AMICS?

AMICS- Advanced Mineral Identification and Characterization System

Is an automated system to

- Perform high speed, autonomous image and spectral analysis
- Provide statistical information on phases contained in the sample and spatial distribution

40.0 35.0 30.0 25.0 20.0 15.0

SEM EDS W/r% XRE W/r

AMICS Result Reporting

Map overview with mineral phases or table

Modal Mineralogy

	Name	Wt%	Area%	Area (µ2)	Particle Num	Grain Number	Relative Error
Q	<all> 🔎</all>						
1	Quartz	6.20	7.32	784575.10	1	931	1.87
2	Andesine	21.93	25.37	2721339.45	1	1067	1.87
3	Ferrohomble	48.03	46.09	4942962.19	1	666	1.87
4	Biotite	9.97	9.74	1044473.43	1	2051	1.87
5	Ilmenite	7.24	4.74	508612.79	1	467	1.87
6	Apatite	4.58	4.44	476034.98	1	205	1.87
7	Epidote	0.66	0.60	63998.02	1	403	1.87
8	Chlorite	0.39	0.38	40686.61	1	547	1.87
9	Other	0.61	0.58	62555.11	1	712	1.87
10	Unknown	0.39	0.74	79395.40	8	2864	0.00

Minerals or elements in different chart diagrams

Modal Mineralogy

AMICS Result Reporting

Map overview with mineral phases or table

Modal Mineralogy

	Name	Wt%	Area%	Area (µ2)	Particle Num	Grain Number	Relative Error
Q	<all> 🔎</all>						
1	Quartz	6.20	7.32	784575.10	1	931	1.87
2	Andesine	21.93	25.37	2721339.45	1	1067	1.87
3	Ferrohomble	48.03	46.09	4942962.19	1	666	1.87
4	Biotite	9.97	9.74	1044473.43	1	2051	1.87
5	Ilmenite	7.24	4.74	508612.79	1	467	1.87
6	Apatite	4.58	4.44	476034.98	1	205	1.87
7	Epidote	0.66	0.60	63998.02	1	403	1.87
8	Chlorite	0.39	0.38	40686.61	1	547	1.87
9	Other	0.61	0.58	62555.11	1	712	1.87
10	Unknown	0.39	0.74	79395.40	8	2864	0.00

Minerals or elements in different chart diagrams

Modal Mineralogy

Mineral Classification Global/Reference spectra

Reference Spectrum

Mineral Classification Synthetic Generated Spectra

- Patented software from Bruker
- Generate spectra from mineral composition
- Accounts for system specific characteristics
- Possible to generate standards for variable compositions such as solid solution series olivine, feldspar carbonates and even arsenian pyrite
- Mixed spectra

Mineral Classification Current classification model

- Chi-square statistical method
- Not very sensitive for small peaks/minor elements
- Incorrect classifications/false positives
- Mixed Spectra difficult to account for all possible mixes
- Artefact such as Bragg diffraction that can occur with X-ray generated technique

Spectrum Tree Aim

- Control the mineral classification
- Ensure accuracy and repeatability
- Easily browse and search spectrum

Spectrum Tree Motivations

- To handle corner cases of mineral classification (e.g. trace/low amounts)
- To take other information into account (e.g. BSE for Hematite/Magnetite)
- To inspect the measured spectrum for quality assurance
- More transparency on the accuracy of the classification process
- Ability to investigate the classification of any individual spectra

Spectrum Tree Parameters

- Standard listing
- By energy filtering (energy regions)
- By BSE value
- By count clustering
- By manual clustering
 - Best automatic search
 - Selected spectrum
- By automatic clustering

Spectrum Tree Layout

Spectrum Tree Layout

Spectrum Tree Trace Elements: Gold

Spectrum Tree Gold

Spectrum Tree Detailed Mineralogy

Spectrum Tree Granite Zoned Plagioclase

Biotite Quartz Orthoclase Calcite Zircon 1 Albit 0%Or100%Ab0%An Andesin 5%Or55%Ab40%An Andesin 5%Or60%Ab35%An Oligoclase_5%Or75%Ab20%An Oligoclase_5%Or80%Ab15%An Orthoclase 100%Or0%Ab0%An Anorthite 0%Or0%Ab100%An Bytownite 5%Or15%Ab80%An Bytownite 5%Or20%Ab75%An Labradorite 5%Or35%Ab60%An Labradorite_5%Or40%Ab55%An Anorthoclase_15%Or65%Ab20%An Sanidin 90%Or5%Ab5%An Sanidin 85%Or10%Ab5%An Sanidin_85%Or5%Ab10%An Sanidin 80%Or15%Ab5%An Sanidin 80%Or10%Ab10%An Sanidin_80%Or5%Ab15%An Sanidin 75%Or20%Ab5%An Sanidin 75%Or15%Ab10%An Sanidin_75%Or10%Ab15%An Sanidin 70%Or25%Ab5%An Sanidin 70%Or20%Ab10%An Sanidin 70%Or15%Ab15%An Sanidin 65%Or30%Ab5%An Sanidin 65%Or25%Ab10%An Sanidin_65%Or20%Ab15%An Anorthoclase 15%Or70%Ab15%An Anorthoclase 15%Or75%Ab10%An Anorthoclase 15%Or80%Ab5%An Anorthoclase_20%Or65%Ab15%An Anorthoclase 20%Or70%Ab10%An Anorthoclase 20%Or75%Ab5%An Anorthoclase_30%Or65%Ab5%An Quartz Kspar Apatite_1 Apatite_K-spar Unknown Low Counts Un_x_rayed Shadows

Pores

Spectrum Tree Granite Zoned Plagioclase

Demonstration

M4 TORNADO AMICS Summary

- New synthetic spectra assist greatly with the creation of reference spectra and identification of minerals, and even compositional variations can be captured
- Spectrum Tree assist with evaluating and refining classification
- Better utilize the lower detection limit possible with the M4 using the classification parameters provided by the spectrum tree
- Excellent application for capturing information on large samples without any preparation needed or damage to sample
- Helps to make more informed decisions in selecting samples for time-consuming SEM-EDS analysis or even thin section selection for optical microscopy

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*.

For more information, please contact us:

samual.scheller@bruker.com

gertrudia.gloy@bruker.com

info.bna@bruker.com

https://www.bruker.com/products/x-ray-diffraction-and-elemental-

analysis/micro-xrf-and-txrf/m4-tornado/m4-tornado-amics.html

Innovation with Integrity