Advanced sample preparation by broad ion beam milling for EBSD analyses

FISCHI

INSTRUMENTS

Dr. Laurie Palasse Senior Application Scientist EBSD Bruker Nano, Berlin **Dr. Pawel Nowakowski** Applications Scientist Fischione Instruments, USA

Outline

- EBSD technique overview
- ARGUS[™] imaging system
- Broad ion beam milling: Model 1061 SEM Mill
- Application examples:
 - > Austenitic steel
 - > Zirconium alloy
 - > Ti CP
 - > Ti alloy
 - > Solder bumps

EBSD technique

e⁻Flash_{FS}

- EBSD Electron BackScatter Diffraction
- SEM based technique to measure crystal orientations
- Applicable to any **crystalline material** (in theory)
- Provides the absolute crystal orientation with sub-micron spatial resolution: as fine as 300 nm grain size for bulk sample, 10 nm with Transmission Kikuchi Diffraction (TKD)
- Complementary technique between X-ray diffraction and TEM studies

The only technique that correlates local texture (orientation) with microstructure (grain metrics, grain boundary, ...)

Introduction EBSD: What is it used for?

To understand the material properties by:

- Analysing the grain structure, crystal orientation, phase ID, and distribution
- Residual stress, quality control, phase transformation, fracture analysis, strain analysis, tectonophysic studies...
- **Texture analysis**: Assessing the effects of the thermomechanical processes
- Complement the chemical information; maximise your knowledge of the sample and the processes involved

EBSD technique EBSP formation

- e- beam strikes specimen
- Scattering produces e- travelling in all directions
- e⁻ that satisfy the Bragg condition (nλ=2d.sinθ) for a plane (hkl) are channeled ⇒ 2 hyperbolas/diffraction cones (Kikuchi bands) corresponding to the various diffracting planes
- Backscatter volume: Top few nanometers below the surface
- e⁻ strike the phosphor screen and produce light (gnomonic projection)
- Which is detected by a CCD or CMOS camera and digitised
- The resulting diffraction pattern "EBSP" is automatically analysed and indexed...

EBSD technique EBSD measurement phase identification & distribution

EBSD phase map Hit rate 99,4%

Fe fcc49,1%Fe bcc50,2%

10.11.2020

EBSD technique EBSD measurement phase identification & distribution

EBSD phase map

Hit rate 99,4%

Fe fcc 49,1%

Fe bcc 50,2%

Grain boundaries (13,1 mm)

Phase boundaries (63,4 mm) $\sum 3$ (17 mm)

EBSD technique EBSD measurement – grain metrics

Grain distribution map

1,7M points in 30 min 5631 grains measured Average grain size: 11 μm

Correlation between local texture, microstructure, grain boundary and grain size analysis, ...

EBSD technique EBSD measurement – other applications

High-quality EBSD measurement requires high-quality sample preparation

INSTRUMEN

Highly deformed copper sample prepared by ion milling

- Ion milling removes topography and mechanical preparation artifacts from the sample. An iterative workflow between the SEM Mill and the ARGUS™ imaging system results in optimal sample preparation.
- ARGUS[™] orientation contrast imaging displays the quality of the sample preparation; orientation (IPF) and misorientation (KAM) maps reveal the microstructure of the material.

IPF orientation EBSD map

Kernel average misorientation

ARGUS[™] imaging system

FSE imaging system Color-coded orientation contrast

 SE images have very low contrast; not easy to find region of interest

FSE imaging system Color-coded orientation contrast

- SE images have very low contrast; not easy to find region of interest
- Common Fore Scattered Electron (FSE) detectors acquire images with better contrast

FSE imaging system Color-coded orientation contrast

- SE images have very low contrast; not easy to find region of interest
- Common Fore Scattered Electron (FSE) detectors acquire images with better contrast
- However, ARGUS[™] color-coded FSE images can reveal much more detail with acquisition speed of 125 000 pps

- Each diode captures a similar amount of noisy backscattered electrons and a different small part of the diffracted backscattered electrons, i.e., EBSD signal
- Signal (e⁻ counts) is transferred using a separate channel for each diode
- When scanning, for each pixel the system will obtain three numbers which will be transformed into three RGB levels
- When the three signals/RGB levels are mixed we obtain...

At very low magnifications the large beam displacements induce a visible shift of the signal maximum for each of the FSE detectors. This is corrected automatically.

500 µm

FSE imaging system with ARGUS[™] How does it work?

Broad Ion Beam Milling Model 1061 SEM Mill

Model 1061 SEM Mill A versatile argon broad ion beam mill for SEM applications

- Produces ideal results for both planar and cross-section samples
- Wide-ranging ion energies allow either rapid milling or gentle polishing on a broad variety of sample materials
- Artifact-free samples are readily produced
- Easy-to-use interface
- **Fully automated**, including precise sample height detection, for high-throughput applications
- Liquid nitrogen stage cooling
- Vacuum / inert gas transfer to SEM capability

Model 1061 SEM Mill Milling geometries

Ion energies range from 0.1 to 10 keV Variable milling angle range: 0 to 10° Stage movement: Continuous rotation or rocking

Model 1061 SEM Mill Milling geometries

Model 1061 SEM Mill Planar sample milling

Model 1061 SEM Mill Planar sample milling

Model 1061 SEM Mill Sample height detection

Model 1061 SEM Mill Cross-section sample milling

Model 1061 SEM Mill TrueFocus ion sources

- Adjustable energy range from 100 eV to 10 keV
- Ion beam spot size ranges from 300 µm to 5 mm
- Consistent beam current
- Motorized ion sources enable touch screen control of beam angle adjustments

Broad ion milling Sample preparation

The specimen surface must be deformationfree to conduct EBSD measurements.

Scratches and damages caused by mechanical polishing are removed by the ion milling process.

As a result, the material's microstructure is revealed, and statistical data can be acquired.

Austenitic steels

Austenitic 300 series Orientation contrast imaging with ARGUSTM

Mechanically polished using colloidal silica

Austenitic 300 series Orientation contrast imaging with ARGUSTM

Mechanically polished using colloidal silica

Austenitic 300 series Orientation contrast imaging with ARGUSTM

Dynamic strain-induced phase transformation of austenite to martensite during mechanical polishing

Austenitic 300 series EBSD phase distribution map

Mechanically polished using colloidal silica

Phase map Step size: 0.5 μm Pattern resolution: 80x60 pixels Acquisition speed: 950 Hz

Indexing rate: 99%

Martensite 12% Austenite 87%

Dynamic strain-induced phase transformation of austenite to martensite during mechanical polishing

Austenitic 300 series EBSD phase distribution map

10.11.2020

Ion milled at 5 and 2 keV energy; 2° angle

Phase map Step size: 0.5 μm Pattern resolution: 80x60 pixels Acquisition speed: 950 Hz

Indexing rate: 99.8%

No dynamic strain-induced phase transformation
Austenitic 300 series Texture

INSTRUMENTS

Mechanically polished: colloidal silica

lon milled: 5 and 2 keV energy; 2° angle

Austenitic 300 series Texture

Mechanically polished: colloidal silica

lon milled: 5 and 2 keV energy; 2° angle

Austenitic 300 series Texture

Mechanically polished: colloidal silica

Ion milled: 5 and 2 keV energy; 2° angle

Kurdjumov–Sachs orientation relationship $\{111\}_{\gamma} || \{110\}_{\alpha'}$ and $<1-10>_{\gamma} || <11-1>_{\alpha'}$

Austenitic 300 series EBSD phase distribution map

Ion milled: 5 and 2 keV energy; 2° angle

Step size: 100 nm Pattern resolution: 160x120 pixels Indexing rate: 99% Martensite Austenite

Austenitic 300 series EBSD IPF map

Mechanically polished: colloidal silica

Ion milled: 5 and 2 keV energy; 2° angle

Step size: 100 nm Pattern resolution: 160x120 pixels Indexing rate: 99%

Austenitic 300 series Kernel average misorientation map

Step size: 100 nm Pattern resolution: 160x120 pixels Indexing rate: 99%

Ion milled: 5 and 2 keV energy; 2° angle

Zirconium alloy

Zirconium 702 alloy Orientation contrast imaging with ARGUSTM

Mechanically polished: colloidal silica

Ion milled: 8 and 2 keV energy; 3° angle

The microstructure is not visible

The fine microstructure is revealed (inter- and intragranular)

Zirconium 702 alloy EBSD patterns

Mechanically polished: colloidal silica

Very few patterns

Ion milled: 8 and 2 keV energy; 3° angle

Many excellent quality patterns

Zirconium 702 alloy Pattern quality EBSD maps

Mechanical polishing by colloidal silica

Ion milled: 8 and 2 keV energy; 3° angle

Indexing rate: 98.6%

Indexing rate: < 1%

Zirconium 702 alloy EBSD IPF maps

Ion milled: 8 and 2 keV energy; 3° angle

IPF Z map Step size: 80 nm Indexing rate: 98.6%

Zirconium 702 alloy Grain average misorientation: Strain localization

Ion milled: 8 and 2 keV energy; 3° angle

No artifact is observed after ion milling

Zirconium 702 alloy Grain average misorientation: Recrystallized grains

Ion milled: 8 and 2 keV energy; 3° angle

Zirconium 702 alloy Kernel average misorientation

Ion milled: 8 and 2 keV energy; 3° angle

No artifact is observed after ion milling

Titanium grade 2

Titanium grade 2 Orientation contrast imaging with ARGUSTM

Titanium grade 2 Orientation contrast imaging with ARGUSTM

Titanium grade 2 Orientation contrast imaging with ARGUSTM

Titanium grade 2 EBSD pattern

Phase file

Diffraction pattern

Titanium grade 2 Large-area milling and EBSD map

Ion milled: 8, 6, and 2 keV; 3° angle

Titanium grade 2 Large-area milling and EBSD map

Titanium grade 2 Large-area milling and EBSD map

Grain size distribution

Titanium grade 5 (Ti-6Al-4V)

Titanium grade 5 (Ti-6Al-4V) Orientation contrast imaging with ARGUSTM

Titanium grade 5 (Ti-6Al-4V) EBSD patterns

Titanium grade 5 (Ti-6Al-4V) EBSD phase distribution map

Ion milled: 6 and 2 keV; 3° angle

Phase map Step size: 80 nm

Indexing rate: 98.6%

Titanium grade 5 (Ti-6Al-4V) EBSD IPF map

Ion milled: 6 and 2 keV; 3° angle

Solder bumps

Solder bumps Cross-section sample schematic

Structure is fragile

Solder bumps EBSD IPF map

Mechanical polishing by colloidal silica

IPF Z map

- SiO₂ particles are difficult to remove
- Areas of the interface are not visible due to shadowing by the copper pad caused by differential material removal
- Corrosion of packaging components leaves surface contamination

Solder bumps Cross-section sample

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Solder bumps Backscatter electron contrast imaging

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Solder bumps EBSD patterns

Solder bumps EBSD phase distribution map

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Phase map Step size: 150 nm Pattern resolution: 80x60 pixels Indexing rate: 95%

Phase	Color	% normalized	Average grain size
Cu		12.5	10 µm
Cu_6Sn_5		1.5	1,7µm
Ag ₃ Sn		1	700 nm (fine grains only)
Sn		85	NA (only 4 grains)

Solder bumps EBSD IPF map

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

IPF Z map

Solder bumps Kernel average misorientation

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Solder bumps Orientation contrast imaging with ARGUSTM

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Solder bumps EBSD phase distribution map

Ion milled at 6 and 2 keV; cross-section milling with mask under cryo conditions

Phase map Step size: 80 nm Pattern resolution: 80x60 pixels Indexing rate: 96%

Achieve excellence in EBSD analyses Summary

Combining Fischione Instruments and Bruker NanoAnalytics technologies allows all user levels to quantitatively characterize a sample's microstructure in a timely and accurate manner.

- **Fischione Instruments** provides fast and reliable sample preparation solutions for a wide range of applications and a wide range of challenging materials, such as thermally sensitive samples (solder bumps) and environmentally sensitive samples (lithium-ion batteries)
- Bruker QUANTAX EBSD delivers a complete solution for EBSD and TKD, with:

- ARGUS[™] imaging system with unmatched sensitivity and speed for sample preparation quality control and qualitative mapping of plastic and elastic strain in the specimen

- high resolution EBSD measurement to characterize quantitatively the micro/nanostructure, phase distribution, texture,..., making it the ideal analytical tool for deformation studies

Are there any questions?

Please type your questions in the Q&A box and press *Send*

FISCHIONE INSTRUMENTS

www.bruker.com

www.fischione.com

©2020 Bruker Corporation and E.A. Fischione Instruments, Inc. All rights reserved.