Nanostructural characterization of semiconductors with SEM

Bruker Nano Analytics webinar

Nanostructural characterization of semiconductors with SEM Overview

- Why TKD?
- on-axis TKD: the optimum geometry for crystal orientation mapping at the nanoscale
- Challenges with semiconducting nanostructures
- Application examples
- ARGUS[™] imaging system
- Summary

Why TKD?

EBSD vs. off-axis TKD Differences

EBSD vs. off-axis TKD Why TKD?

off-axis TKD Limitations

EBSD

- Backscattered electrons
- Lateral resolution > 40 nm
- !! Interaction volume!!

Off-axis TKD

- Transmitted scattered electrons
- Lateral resolution > 10 nm
- !! thickness & Z !!

off-axis TKD Limitations – nanomaterials with different atomic weight

off-axis vs. on-axis TKD signal strength

- Low signal yield where it is most intense
- Gnomonic projection distortions indexing quality/band detection affected
- "low" spatial resolution

Weak signal is compensated by:

- High electron dose/beam current
 > resolution loss
- Sample charging/contamination
- Sensitive to beam instabilities

off-axis vs on-axis TKD on-axis is the optimum geometry

on-axis TKD Ð e-beam axis

Au Pattern courtesy of Alice da Silva Fanta, DTU, Denmark

* "Orientation mapping by transmission-SEM with an on-axis detector", J.-J Fundenberger et al., Ultramicroscopy, 161, 17–22, 2016

OPTIMUS TKD™ The optimum geometry

- Optimum geometry for signal collection
- 10x better signal, high efficiency, • minimal pattern distortions
- High contrast patterns at low probe • currents
- High quality • data with improved band detection and fast measurement speeds

On-axis TKD

e-beam axis

OPTIMUS TKD[™] Resolving sub-2 nm features with SEM

20nm Au film on 5nm Si₃N₄ membrane

- EHT: 30kV
- Probe current: 2nA
- Step size: 1.5nm
- Acq. speed: 320fps (3ms/point)
- Total acquisition time: 6:31min
- Map size: 126k pixels
- No data cleaning applied
- Zero sol.: 11.5%
- Resolving features <5nm
- Annealing twin: ~4nm wide

Sample is courtesy of **Alice Da Silva Fanta** from DTU Nanolab in Copenhagen, Denmark

OPTIMUS TKD[™] Resolving sub-2 nm features with SEM

20nm Au film on 5nm Si₃N₄ membrane

- EHT: 30kV
- Probe current: 2nA
- Step size: 1.5nm
- Acq. speed: 320fps (3ms/point)
- Total acquisition time: 6:31min
- Map size: 126k pixels
- No data cleaning applied
- Zero sol.: 11.5%
- Resolving features < 5nm
- -• Annealing twin: ~4nm wide

Sample is courtesy of Alice Da Silva Fanta from DTU Nanolab in Copenhagen, Denmark

OPTIMUS TKD[™] vs off-axis TKD improved speed, spatial resolution and indexing rate

- EHT: 30kV
- Probe current: 2 nA
- Step size: 2 nm
- Speed: 50 fps vs. 320 fps
- Zero sol.: 30 % vs 11.5%

2nm spatial resolution is only achieved with on-axis geometry

OPTIMUS TKD[™] vs off-axis TKD improved speed, spatial resolution and indexing rate

OFF-AXIS TKD

- EHT: 30kV
- Probe current: 2 nA
- Step size: 2 nm
- Speed: 50 fps vs. 320 fps
- Zero sol.: 30 % vs 11.5%

2nm spatial resolution is only achieved with on-axis geometry **ON-AXIS TKD**

OPTIMUS™ TKD

OPTIMUS TKD[™] Complete TKD solution

OPTIMUS Main features:

- Horizontal phosphor screen for capturing the signal around SEM's optical axis
- e- fwd scattered images giving STEM like DF/BF like imaging with Argus™
- Easy to use/switch between EBSD and TKD modes
- Compatible with all existing *e*-Flash detectors

OPTIMUS TKD[™] Complete TKD solution

- OPTIMUS[™] TKD detector head
- Professional TKD toolkit (with patented sample holder)
- X-rella for optimum combined EDS/TKD measurement (patent pending)
- OPTIMUS[™] TKD fully integrated in ESPRIT

Semiconducting nanostructures

Semiconducting nanostructures Challenges

- Grain/feature/layer size < 200 nm: spatial resolution < 10 nm
- Need low probe current measurements \rightarrow (+) Resolution (-) drift
- Off axis mode: signal overlap/low signal at GB or interfaces of different layers

OPTIMUS[™] TKD & e-Flash^{FS}

- Spatial resolution: unmatched spatial resolution < 2nm
- Fast: high speed TKD with *e*-Flash^{FS}
- Sensitive: speed and data quality not compromised even at low beam currents (e.g. 2 nA)

Application examples STEM bright field images

Solid state drive

Microprocessor/FinFET

CIGS solar cell

- FIB Lamellae
- Lift outs from bulk samples using Ga-ion FIB
- Trenching/coarse thinning at 30 kV
- Fine milling at 5 kV and 2 kV
- Final sample thickness: 40nm -70nm
- TKD: OPTIMUS TKD head mounted on *e*⁻Flash^{FS} detector
- EDS: FlatQUAD annular EDS detector

TKD/EDS simultaneous analysis XFlash FlatQUAD

XFlash FlatQuad EDS detector:

- Side entry, annular design
- Central aperture for primary beam
- 4x15mm²
- Highest solid angle (up to 1.1 sr)
- High count rate at low beam currents
- Ideal for samples with low x-ray yield → light elements

TKD/EDS simultaneous measurement XFlash FlatQUAD

Solid-state memory device (SSD): FIB lamella STEM-BF and EDS map

EDS mapping parameters:

- Det: FlatQUAD
 - High voltage: 10 kV
- Abs. current: 910 pA
- WD: 11 mm
- Map size: 82.6 K pixels
- Map time: 30 s
- Input counts: 224.3 Kcps
- Output counts: 153.3 Kcps
- Total counts: 4.65E+06
- DT: 32%

Solid-state memory device (SSD): FIB lamella STEM-BF and IPF maps

TKD mapping parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 10nm
- Acq. speed: 161.4 fps
- Map size: 258k pixels
- Zero sol.: 1.9% Al layer

Solid-state memory device (SSD): FIB lamella STEM-BF and IPF maps

TKD mapping parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 10nm
- Acq. speed: 161.4 fps
- Map size: 258k pixels
- Zero sol.: 1.9% Al layer

Microprocessor/FinFET: Large area mapping STEM bright field and EDS map

Microprocessor/FinFET: Large area mapping STEM bright field and EDS map

Microprocessor/FinFET: Large area mapping STEM bright field and EDS map

EDS mapping parameters:

- High voltage: 12 kV
- WD: 11 mm
- Map size: 4.88E+05 pixels
- Map size: 13.67 × 4.80 µm
- Acq. time: 300 s
- Input counts: 504 Kcps
- Output counts: 188.5 Kcps
- Total counts: 5.74E+07
- DT: 49%

Cu mapping parameters:

- Step size: 5nm
- Acq. speed: 139 fps
- Map size: 198 k pixels

Ge mapping parameters:

- Step size: 3nm
- Acq. speed: 148 fps
- Map size: 38.8 k pixels

Al mapping parameters:

- Step size: 5nm
- Acq. speed: 328 fps
- Map size: 515 k pixels

Microprocessor/FinFET: Large area mapping STEM and IPFY maps

Microprocessor/FinFET: impurities/intermetallics Cu intermetallics in Al layer

Microprocessor/FinFET: impurities/intermetallics Cu intermetallics in Al layer

Microprocessor/FinFET: spatial resolution STEM and IPFY map on Cu interconnect

TKD mapping parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 2 nm
- Acq. speed: 185 fps
- Zero sol.: 1.47%

Microprocessor/FinFET: spatial resolution STEM and IPFY map on Cu interconnect

TKD mapping parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 2 nm
- Acq. speed: 185 fps
- Zero sol.: 1.47%

Application example: Cu(InGa)Se₂ solar cell STEM BF

Sample courtesy: M. Raghuwanshi, RWTH Aachen University, Aachen, Germany

Application example: Cu(InGa)Se₂ solar cell Large area mapping

Pattern quality map

Application example 1: Cu(InGa)Se₂ solar cell Large area mapping

IPF-Z map

Mapping parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 4nm
- Acq. speed: 330 fps
- Map size: 1.93 million pixels
- Zero sol.: 19.3% (whole map)
- Zero sol.: 1.18% on CIGS

Indexing rate in CIGS: 98.82%

ARGUS[™] imaging system

ARGUS imaging STEM like BF/DF imaging

Imaging parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 5nm
- Image size: 7.5 × 5.6 μm

Mode 1:

• STEM-like bright field

Sample courtesy: M. Raghuwanshi, RWTH Aachen University, Aachen, Germany

ARGUS imaging Color coded orientation contrast imaging

CIGS layers

Imaging parameters:

- EHT: 30kV
- Probe current: 1.6 nA
- Step size: 5nm
- Image size: 7.5 × 5.6 μm

Mode 2:

• STEM-like dark field

Sample courtesy: M. Raghuwanshi, RWTH Aachen University, Aachen, Germany

ARGUS imaging Color coded orientation contrast imaging

Al layer

STEM Bright field

ARGUS STEM-DF like imaging:(color coded orientation contrast) Argus Imaging parameters:

- EHT: 30kV
- Step size: 2 nm
- Mode: Argus DF
- Acq. speed: 75 s (panorama)

ARGUS imaging Color coded orientation contrast imaging

CIGS sample #2

Bright field

Image acquisition time: 16s

Practical recommendations

Practical recommendations

- FIB lamella: When to start low kV milling?
 - Low kV milling (5 kV, followed by lower kV's) step to be started by observing the SE signal of the lamella at 10 kV (SEM) or lower (e-transparency: Z dependent)
- For samples that may create beam instabilities (e.g. excessive charging/glass/insulating material in the lamella)
 - Use 90° scan rotation let the electrons tunnel or sort of bleed out through these discharge paths
 - This also improves the pattern quality since, without charging, the landing energy is equal to the applied HV

on-axis TKD in SEM Minimize drift induced artifacts

- 40nm Au film on Si (dimpled)
- 2.6nA and **10ms/point**
- 43:05 min

- 20nm Au film on 5nm Si₃N₄ membrane
- 1.75nA and **3ms/point**
- 14:04min

Lower probe currents and faster data acquisition:

less prone to beam instability !!

on-axis TKD in SEM Effect of plasma cleaning on data quality

AG: 238kx WD: 5,0 mm Px: 1,6 nn

TKD results: Pattern Quality maps

Sample:

20nm Au thin film on Si_3N_4 membrane

- Acquisition speed:
 ~250fps (4ms exposure time)
- Detector:
 e-Flash^{FS} with OPTIMUS TKD
- Beam parameters:
 EHT: 30kV
 probe current: 1.75nA

Sample is courtesy of Alice Da Silva Fanta from CEN, DTU, Denmark

on-axis TKD in SEM Effect of plasma cleaning on data quality

TKD results: IPF maps

- Acquisition speed:
 ~250fps (4ms exposure time)
- Detector:
 e⁻Flash^{FS} with OPTIMUS TKD
- Beam parameters:
 EHT: 30kV
 probe current: 1.75nA

111]

• Hit rate: 46.5% vs. 87.6% with plasma cleaning

Nanostructural characterization of semiconductors with SEM Summary

- Stronger signal
 - Improved spatial resolution > 1.5 nm
 - Faster measurements up to 660fps
- Minimum gnomonic distortions
 - Improved band detection
 - Improved indexing quality
- Combined EDS/TKD measurement
- Direct electron detection imaging with ARGUS[™] (Si diodes)
 - Dark & Bright field images ~1nm resolution

>>Possible to map large area with nanometer resolution: better statistics!

Are there any questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Innovation with Integrity