Rapid on-site trace element analysis of wastewater, sewage and industrial effluents

Armin Gross and Hagen Stosnach Bruker Nano GmbH, Berlin April 2020

Welcome

Speakers

Dr. Hagen Stosnach Applications Scientist TXRF Berlin, Germany

Dr. Armin Gross Global Product Manager TXRF Berlin, Germany

Itinerary

- Introduction
- Principles of TXRF
- Water and wastewater application examples
- Standardization of TXRF
- Comparison with Atomic Spectroscopy methods
- Q & A

© skyfi.org.ru

Principles of TXRF

Principles of TXRF Technical background

Total reflection X-ray fluorescence spectroscopy

Beam angle: 0° / 90°

- Samples must be prepared on a reflective media
- Polished quartz glass or polyacrylic glass disc
- Dried to a thin layer, or as a thin film or microparticle
- Matrix effects are negligible

Principles of TXRF Quantification

 C_i : Element concentration C_{IS} : Internal standard concentration N_i : Element net countrate N_{IS} : Internal standard net countrate S_i : Element sensitivity factor S_{IS} : Internal standard sensitivity factor

Principles of TXRF Bruker Product Portfolio

S2 PICOFOX - Unique benefits

- Most compact design
- Fixed excitation mode
- >270 installations worldwide
- Attractive pricing

transportable, for on-site analysis

easy to use, most suitable for teaching

well established technology

most valuable TXRF solution

Principles of TXRF Bruker Product Portfolio

S4 T-STAR - Unique benefits

- Multiple excitation to detect most elements modes of the PSE
- Large area detectors
- improved sensitivity for lowest limits of detection
- Motorized beam path automatic beam adjustment and QC procedures
- Large sample capacity up to 90 sample discs, multi-user operation
- Most modern instrument status display software statistical functions

Preparation of wastewater and sludges

Sample preparation workflow Suspensions and particulate matter

Suspensions can be analyzed right after dilution

Sample preparation workflow Suspensions and particulate matter

Accessories for optimized workflow

- T-Box: carriers are stored safely
 - Reduces risk of contamination
- T-DRY drying station
 - Direct drying of up to 9 trays (81 samples)
 - No direct disc handling for contamination prevention

Typical measurements of wastewater by TXRF

Wastewater Objective

Samples

- 4 artificially spiked sewage samples with high matrix content (Na, Mg, S, Cl, K, Ca)
- 1 certified wastewater standard SPS WW2

Analytical task

 Analysis of toxic elements Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Te, Ba, Hg, Tl, Pb and Bi

Wastewater Sample preparation

Sample preparation

- Aliquotation of 1 ml sewage sample
- Addition of 10 µl internal standard
 - Sc (1 g/l) → W-L excitation
 - Ga (0,1 g/l) → Mo excitation
 - − Pd (1 g/l) \rightarrow W-Brems excitation
- Addition of 100 µl polyvinyl alcohol solution (0,1 g/l) for homogeneous sample drying
- Homogenization in automatic sample shaker
- Preparation of 10 µl sample onto siliconized quartz glass carriers
- Drying in vacuum
- Two samples prepared nine-fold for MLD, all others measured in triplicate

Wastewater Spectrometer configuration

S2 PICOFOX

- Mo tube, 50 kV/600 μA
 - Mo-K excitation, 17,5 keV
- 30 mm² XFlash SDD
- 25 position sample changer

4/22/2020

Wastewater Spectrometer configuration

S2 PICOFOX

- Mo tube, 50 kV/600 μA
 - Mo-K excitation, 17,5 keV
- 30 mm² XFlash SDD
- 25 position sample changer

S4 T-STAR

- Mo tube, 50 kV/1000 μA
 - Mo-K excitation, 17,5 keV
- W-tube, 50 kV/1000 µA
 - W-Brems excitation, 35 keV
 - W-L excitation, 8,4 kev
- 60 mm² XFlash SDD
- 90 position sample changer

Wastewater Measurements

Element range

·	-																
1																	2
н																	He
Hydrogen		1										-	-	_	-	-	Helium
3 I i	4 Bo											5 R	° c	/ N	° ∩	9 F	10 No
Lithium	Beryllium											Boron	Carbon	Nitrogen	Owgen	Fluorine	Neon
11	12											13	14	15	16	17	18
Na	Ma											AI	Si	P	S	CI	Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	l In	Sb	Sn	Те	I	Хе
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Antimony	Tin	Tellurium	lodine	Xenon
55	56 Do	57	72	73	74	75 D o	76	77	78	79	80	81	82 Dh	83 D:	84 Do	85	86 Dm
CS	Ба	La		Та	VV .	Re	US	Ir	Pt	Au	нg	11	PD	ы	PO	At	RN
Cesium	Barium	Lanthanum	Hatnium	I antalum	Tungsten	Rnenium	Osmium	Iridium	Platinum	Gold	Mercury	I hallium	Lead	Bismuth	Polonium	Astanine	Radon
Fr	Ra	Δc															
Francium	Radium	Actinium															
. ranorani	rtadiaini	, lotin di li		58	59	60	61	62	63	64	65	66	67	68	69	70	71
			L	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			Lanthanides	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolynium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Luthetium
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			Actinides	Thorium	Proactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
					- · ·			- · ·									
	Light elements Toxic elements Toxic elements S4 T-STAR only																

Wastewater Results

BRUKER

Recovery rates

- S2 PICOFOX gives recovery rates of $100 \pm 15\%$
- S4 T-STAR: most results within a confidence limit of ± 5% (all ± 10%)
- Standard deviation also improved with S4 T-STAR

4/22/2020

Wastewater Results

Detection limits

- 3-sigma detection limits of both systems applying the Mo-K excitation
- W-L excitation improves light element detection by a factor of 4 to 10

Representative values for Al, Cr, Br and Pb

Wastewater Results

Detection limits

- Only the S4 T-STAR offers a W-Brems excitation for detection of element Klines from Zr to I
- LOD are higher compared to Mo excitation, but without line interferences and sufficient to fulfill regulatory demands for wastewaters

Wastewater Mercury analysis

Results of Hg analysis

- Hg analysis requires fixation
 - Addition of thiourea solution (1 mM)
- Low detection limits can be achieved with both systems
 - S2 PICOFOX: < 5 μg/l</p>
 - S4 T-STAR: < 0,5 μg/l
- Only spikes of 100 ppb could be quantified accurately

Wastewater Summary

Summary

- At typical concentration ranges of wastewaters Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba, Tl, Pb and Bi can be analyzed with both systems
- Due to the improved sensitivity the S4 T-STAR has advantages for
 - The analysis of Al with W-L excitation
 - As and Se in the lower $\mu g/l$ range (< 1 ppb)
 - Cd and Te using W-Brems excitation

Rapid analysis of dissolved water samples

4/22/2020

Rapid water analysis The challenge

Samples

- Target elements: Ti, Cr, V, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Sn, Sb, Pb
- Measurements with new S4 T-STAR, Mo and W excitation

Issues of ICP analysis

- Time for sample preparation, need results within 30 min
- No lab infrastructure at measurement sites

Samples

- Standard samples containing 0,5 mg/kg target elements
- Samples with unknown element concentrations

Rapid water analysis Sample preparation / measurement

Rapid water analysis Results

Name <	Excitation	0.5 ppm - 100s (μg/l)			0.5 pp	0.5 ppm - 200s (µg/I)			0.5 ppm - 300s (µg/l)		
	Excitation	Average	SD	LLD	Average	SD	LLD	Average	SD	LLD	
Mg	Mo-K	34388	9544	62554	13303	1207	45152	15236	6233	35873	
CI	Mo-K	3476	1091	222	3631	1347	156	3491	1236	126	
K	Mo-K	7087	145	112	7013	262	79	7084	206	64	
Ca	Mo-K	827	67	66	863	118	47	893	101	38	
Ti	Mo-K	675	16	17	682	19	12	658	20	9,8	
V	Mo-K	534	11	15	544	7,3	10	540	3,7	8,3	
Cr	Mo-K	479	14	11	503	11	7,3	496	15	6,0	
Mn	Mo-K	498	12	7,6	496	14	5,3	484	8,2	4,2	
Fe	Mo-K	607	14	5,9	609	15	4,1	604	11	3,3	
Со	Mo-K	472	4,4	5,6	471	14	3,9	469	7,1	3,1	
Ni	Mo-K	475	9,6	5,3	475	6,2	3,6	475	12	2,9	
Cu	Mo-K	477	7,4	5,6	487	8,6	3,9	486	8,6	3,1	
Zn	Mo-K	713	11	5,2	723	22	3,7	718	21	2,9	
As	Mo-K	468	7,6	4,0	464	7,5	2,8	465	14	2,3	
Se	Mo-K	458	6,8	2,8	456	10	2,0	454	6,2	1,6	
Br	Mo-K	13	8,6	4,1	16	8,3	2,9	15	8,4	2,3	
Rb	Mo-K	9,8	0,63	1,9	9,6	0,33	1,3	9,7	0,22	1,1	
Y (i.s.)	Mo-K	1000		5,1	1000		3,6	1000		2,9	
TI	Mo-K	400	12	4,4	405	12	3,1	403	9,9	2,5	
Pb	Mo-K	541	14	4,5	552	18	3,1	549	15	2.5	
Namo	Excitation	0.5 p	om - 300s	(µg/l)	0.5 ppm - 600s (μg/l)			0.5 ppm - 1000s (µg/I)			
Name	Excitation	Average	SD	LLD	Average	SD	LLD	Average	SD	LLD	
Мо	W-Brems	165	30	20	162	31	24	160	21	17	
Ag	W-Brems	168	36	58	179	95	50	188	47	33	
Cd	W-Brems	< LLD		81	114	62	70	104	40	46	

Rapid water analysis Detection limits Mo excitation

Sample 0.5 ppm standard mixture

- Mo excitation: 100 s measurement time sufficient
- Detection limits close or below 10 ppb
- Longer measurement times will improve standard deviation

Rapid water analysis Detection limits W-Brems excitation

Sample 0.5 ppm standard mixture

- W-Brems excitation: less than 5 min measurement time for sub-ppm levels
- Longer times needed only for low levels below 100 ppb

Rapid water analysis Lead time for 10 samples

Rapid water analysis Conclusion

- The entire element range from AI to U can be accurately quantified in wastewaters, sludges and effluents
- From sampling to final results in less than 30 minutes
- The analysis close to the sampling site is possible – just a power supply is required

Measurement of light elements in water

Light elements in water Objective

Determination of detection limits

- Sample: NIST 1643d water standard Typical element concentration 10 to 100 µg/l
- Measurements:
 - Original standard
 - 1:10 diluted standard
- Spectrometer S4 T·STAR
 - W-L excitation (8,4 keV)
 - 60 mm² XFlash SDD
- Measurement time: 1000 s measurements were done in triplicate

Light elements in water Results

 Spectrum NIST 1643d

Light elements in water Results

Light elements in water Results

Recovery and detection limits

- Almost all elements show recovery within 100% +/- 20%
 - Low Ni due to overlap with Compton peak

Light elements in water Results

Recovery and detection limits

- Almost all elements show recovery within 100% +/- 20%
 - Low Ni due to overlap with Compton peak
- Detection limits typically below 1 ppb (K to Ni)
- Mg lightest element to be quantified with LOD < 300 ppb
- AI: LOD = 109 ppb, too close to certified amount of 128 ppb

Outlook

Outlook Future TXRF projects

Brumadinho dam disaster

- The dam disaster in the region Minas Gerais, Brazil, occurred on 25 January 2019
- A tailings dam at an iron ore mine suffered a catastrophic failure. The dam released a mudflow of 12M m³. 270 people died as a result of the collapse.

© Ibama, Brazil

Outlook Future TXRF projects

Brumadinho dam disaster

- In June 2020 a S4 T-STAR will be installed at the Universidade Federal de Minas Gerais (UMFG), Departamento de Química
- A large number of sewage samples, soils and biological materials must be analyzed
- Objective is the method development for fast screening with minimal sample preparation by TXRF

© Ibama, Brazil

Standardization of TXRF

Standardization of TXRF Current activities

Normative work

- ISO TS 18507-2015: "Technical Specification for the use of Total Reflection X-ray Fluorescence spectroscopy in biological and environmental analysis"
- ISO 20289:2018: "Total Reflection X-Ray fluorescence analysis of water"

Standardization of TXRF Current activities

Normative work

- ISO TS 18507-2015: "Technical Specification for the use of Total Reflection X-ray Fluorescence spectroscopy in biological and environmental analysis"
- ISO 20289:2018: "Total Reflection X-Ray fluorescence analysis of water"

CA18130 - The "European Network for Chemical Elemental Analysis by TXRF" Action aims to

- coordinate research and building capacity
- to develop and assess new instrumentation, protocols, methods for determination of potentially toxic elements

The Action will

- create an infrastructure for scientific communication, exchange, collaboration
- enhance technical standards and analytical science, fostering research activities, combining partners' expertise

COST = European Cooperation in Science and Technology

CA18130 03/2019 - 03/2022

https://enforcetxrf.eu/

Comparison with Atomic Spectroscopy

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
Suspensions, solid samples	direct analysis without sample digestion possible	saves time and avoids use of hazardous chemicals	
Solid, valuable samples	non-destructive analysis possible (semi- quantitative)	samples are not destroyed and can be used for other purposes	
Linear range	high linear quantify-cation range from sub- ppb to low %	avoids multiple calibrations or measurements; full results after one run	

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
Media, disposables	no consumption of media (e.g. carrier gases, chemicals, standards), no need for periodic replacement of parts (lamps, nebulizer)	cost saving; no special infrastructure (gas lines) required	Vestiden
Quantification	by internal standardization, instrument calibrated ex works	simple; time saving, no daily calibration required	FUE Commentation of the second
Memory effects	No memory effects	ICP: intense purging of the system, risk of carryover from previous samples	ResSing Net Intervaly Background Conc Flag Main Mean 64.664 2221.505 0.001 - - Rep1 1151.829 2271.223 0.002 - - Rep2 74.655 2273.505 0.001 - - Rep3 644.889 2715.977 0.001 - - Object Digits/ - - - -

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
System maintenance and cleaning	QC system check automated, no cleaning of specific parts required	ICP requires daily/weekly system checks	Cleared KR E OT-OT
Ease of operation	simple, suitable for academic training	technicians are able to use TXRF; ICP typically used by (scientific) experts	
Footprint	compact benchtop instrument, foot print 693 x 528 mm	saves lab space	

Cost comparison TXRF versus ICP-MS

Total (5 years)	S4 T·STAR	ICP-MS	Remarks				
Installation	136.900€	188.100€	incl. peripheral devices				
Operation costs	64.600 €	179.000€	disposables, gas, media, standards etc.				
Man hours	82.000 €	134.000€	100 k€/a, 220 working days, 20 samples/d				
Total	283.500 €	501.100 €					
Costs / sample	12,89€	22,78 €					
Sources: Automotive study 2015							

Sources: Automotive study 2015 EPA study ICP-OES cost calculator Spectro Discussion forums Bruker data

More detailed PPT and Excel sheet available

Technology comparison Day-to-day checks

Technology comparison Daily checks

ICP	TXRF
Setup before analysis	
Inspect torch for injector blockage	Check system status
Check nebulizer for blockage	Select excitation
Inspect peristaltic pump tubing	
Check exhaust system operating	
Rinse between samples (ICP-MS)	
After analysis / end of day	
Aspirate rinse solution	
Release pressure and detach pump	
Empty waste vessel	
Wipe down exterior surfaces	Wipe off exterior surfaces
Leave system in stand-by mode	Automatic system stand-by

Technology comparison Weekly/monthly checks

ICP	TXRF
Clean torch and test plasma ignites after reconnection	Sensitivity test (automatic!)
Clean nebulizer frequently (ICP-MS)	Start auto beam adjustment, when sensitivity is decreasing
Check sample introduction tubing, O-rings	
Inspect cone or snout and clean, if needed; check vacuum after reconnection	
Check/replace graphite gasket (ICP-MS)	
Inspect torch bonnet (radial ICP, -MS)	
Clean spray chamber	Check auto beam adjustment
Check/clean nebulizer (ICP-OES)	
Inspect induction coil	
Check/clean air filter for cooling air	
Check/clean water level and air filter on water chiller	

Q & A

Any Questions?

Please **type in** the questions you may have for our speakers in the **Questions Box** and click **Submit**

Innovation with Integrity

Thank you for your attention!

www.bruker.com / www.s4tstar.com