Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Guest speaker: Michael Malaki

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor Németh Application Scientist EDS Bruker Nano Analytics

Michael Malaki

phD candidate Materials Sciences Center Faculty of physics Phillips University Marburg Outline

EDS instrumentation for battery research

Igor Németh Bruker Nano Analytics

- Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components
 Michael Malaki Phillips University Marburg
- Comparison of STEM-EDS and SEM-EDS
 Igor Németh
 Product Name Applytics

Bruker Nano Analytics

Bruker Nano GmbH, EDS instrumentation for battery research

Dr. Igor Németh

Requirements, tools and methods of EDS analysis for battery research

- High solid angle X-ray collection in SEM and in STEM
 - -> sufficient data quantity for thin FIB lamellae samples
- Hypermap: measure data and process later
 - -> element distribution maps, line profiles
- Deconvolution:
 - -> Real distribution maps (also for overlapping peaks)
 - -> Quantification of spectra and maps
- In situ measurements: EDS at elevated temperatures

Geometric constraints in SEM and STEM: Solid and take-off angle are important to consider!

Tools of EDS analysis: Hypermap

Save data as **Hypermap** and **process later**:

Extract spectra:

-> prove presence/absence of elements

-> Calculate quantitative concentration values

Extract line profiles:

-> Quantitative line profiles

Quantitative element distribution maps

Energy [keV]

EDS in situ / at elevated temperatures

TEM: 11mm sample - detector distance

Challenges:

Thermal radiation -> noise > high background below 2keV: detection of light elements affected

This effect depends on:

- sample-detector distance
- detector window material

Possibilities:

- Spectra: monitoring of element lines
- Mapping: Phase changes, segregations

J. T. van Omme et al., Ultramicroscopy 192 (2018) 14-20

SEM: 25mm sample - detector distance

Jane Y. Howe (ORNL), Christianne Beekman (Florida St. Uni)

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor Németh Application Scientist EDS Bruker Nano Analytics

Michael Malaki

phD candidate Materials Sciences Center Faculty of Physics Phillips University Marburg

Significance of STEM-EDXS analysis in the characterization of rechargeable battery components

Michael Malaki, Shamail Ahmed, Anuj Pokle

Material Science center, Faculty of physics Philipps university Marburg

Contents

Motivation

- Material
- Instrumentation and work-flow

Nanopore Defects in NCM Cathodes

- HRSTEM and EDXS at Nanopores
- In-situ Evolution of Nanopores

Surface Coating and thin-films

- EDXS at Lithium-Cobalt oxide thin-films
- EDXS on NCM Surface Coatings

Conclusion

Motivation

Sources

© Statista 2021

World Economic Forum; McKinsey

- The global battery energy demand set to increase over 14x by 2030
- Global PEV sales of 3.24 million in 2020 compared to 2.26 million in 2019

3 World Economic Forum, Global Battery Alliance; McKinsey analysis http://www3.weforum.org/docs/WEF_A_Vision_for_a_Sustainable_Battery_Val ue_Chain_in_2030_Report.pdf

Additional Information:

5 Modified from C. Liu, Z. G. Neale, and G. Cao, "Understanding electrochemical potentials of cathode materials in rechargeable batteries," *Materials Today*, vol. 19, no. 2, pp. 109–123, Mar. 2016.

S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, K. Volz, *ACS nano* 2019, *13*, 10694.

6 Modified from C. Liu, Z. G. Neale, and G. Cao, "Understanding electrochemical potentials of cathode materials in rechargeable batteries," *Materials Today*, vol. 19, no. 2, pp. 109–123, Mar. 2016.

S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, K. Volz, *ACS nano* 2019, *13*, 10694.

8 S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, K. Volz, *ACS nano* 2019, *13*, 10694.

STEMsalabim — STEMsalabim 5.0.0 documentation." [Online]. Available: <u>http://www.stemsalabim.de/en/latest/</u>

Morphology of NCM Cathodes in SEM

materials for advanced lithium-ion batteries: microstructure designs and performance regulations" 2020 Nanotechnology 31 012001

Marburg

aboratory

Complimentary Instrumentation

S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S.-J. Cho, K.-B. Kim, K. Y. Chung, X.-Q. Yang, K.-W. Nam, *ACS applied materials & interfaces* 2014, *6*, 22594.

Kondrakov, A., Schmidt, A., Xu, J., Geßwein, H., Mönig, R., & Hartmann, P. et Philipps al. (2017). The Journal Of Physical Chemistry C, 121(6), 3286-3294. doi: 10.1021/acs.jpcc.6b12885

S.-M. Bak, K.-W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K.-B. Kim, K. Y. Chung, X.-Q. Yang, *Chem. Mater.* 2013, *25*, 337

Universität

Marburg

Instrumentation & Workflow

Philipps

Universität Marburg

EDX Detector

Instrumentation & Workflow

FIB Lamella

13 **[1]** S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, K. Volz, *ACS nano* 2019, *13*, 10694.

Contents

Motivation

- Material
- Instrumentation and work-flow

Nanopore Defects in NCM Cathodes

- HRSTEM and EDXS at Nanopores
- In-situ Evolution of Nanopores

Surface Coating and thin-films

- EDXS at Lithium-Cobalt oxide thin-films
- EDXS on NCM Surface Coatings

Conclusion

Nanopore Defects in NCM Cathodes

STEM-HAADF of Primary grains

- Nanopores have distinct dark contrast in HAADF images
- Inherent, cycling and/or thermal induced?

15 **[1]** S. Ahmed, A. Pokle, S. Schweidler, A. Beyer, M. Bianchini, F. Walther, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, K. Volz, *ACS nano* 2019, *13*, 10694.

Philipps

R

el 9

Universität

Marburg

EDX Mapping at Nanopores

EDX Mapping at Nanopores

Marburg

Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) on NCM85

Philipps

Universität

Marburg

ToF-SIMs show that sulfur contaminants exist as Li_2SO_4

Implications for synthesis

 Synthesis involves co-precipitation of TM sulfates NiSO₄, CoSO₄ and MnSO₄ into metal hydroxides Ni(OH)₂, Co(OH)₂, and Mn(OH)₂

 LiNiO2 (LNO) prepared using commercial NiO precursor does not exhibit intragranular nanopores

Contents

Motivation

- Materia
- Instrumentation and work-flow

Nanopore Defects in NCM Cathodes

- HRSTEM and EDXS at Nanopores
- In-situ Evolution of Nanopores

Surface Coating and thin-films

- EDXS at Lithium-Cobalt oxide thin-films
- EDXS on NCM Surface Coatings

Conclusion

In-situ Heating of Nanopores

- Is heating intragranular nanopores similar to cycling?
- What happens to NCM85 during thermal runway?

In-situ Heating of Nanopores

In-situ Heating of Nanopores

- Transition metals (mostly Nickel) migrate into the Li-slabs.
- The pore boundary densification with sharp facets at high temperature.

Formation of Nanodomains

EDX and EELS on Nanodomains

Contents

Motivation

- Materia
- Instrumentation and work-flow

Nanopore Defects in NCM Cathodes

- HRSTEM and EDXS at Nanopores
- In-situ Evolution of Nanopores

Surface Coating and thin-films

- EDXS at Lithium-Cobalt oxide thin-films
- EDXS on NCM Surface Coatings

Conclusion

Lithium Cobalt Oxide thin-film on Al₂O₃ Substrate

STEM-BF

Co-Al Overlay

Mg EDX

EDX Spectrum of Lithium Cobalt Oxide thin-film on Al₂O₃ Substrate

Mg Peak

Titanium Oxide (TiO) coating on NCM

HAADF

Ti EDX

Ni-Ti Overlay

EDX spectrum from TiO coated NCM

Conclusions

• The intragranular nanopores evolve with cycling and temperatures.

• Sulfur species identified with STEM-EDX

- Thin coatings and contaminant layers detected.
- Contaminations can be introduced at any stage of synthesis.

Thank you for your attention!

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor Németh Application Scientist EDS Bruker Nano Analytics

Michael Malaki

phD candidate Materials Sciences Center Faculty of Physics Phillips University Marburg

Images taken under measurement conditions optimized for EDS analysis Image quality does not affect EDS resolution on this scale!

STEM 200kV 60 mm² EDS detector SEM 20kV 60 mm² EDS detector SEM 20kV FlatQuad detector

Total measurement time= 8 mins Beam current= 0.2 nA Input count rate ~ 1 kcps

Total measurement time= 34 mins Beam current=2 nA Input count rate ~ 30 kcps Total measurement time= 34 mins Beam current= 2 nA Input count rate ~ 460 kcps

STEM 200kV 60 mm² EDS detector SEM 20kV 60 mm² EDS detector SEM 20kV FlatQuad detector

STEM 200kV 60 mm² EDS detector SEM 20kV 60 mm² EDS detector SEM 20kV FlatQuad detector

What additional information EDS reveals

Sample and data courtesy: Michael Malaki, Shamail Ahmed, Materials Sciences Center, Philipps University Marburg

STEM-EDS vs. SEM-EDS vs. SEM-FlatQuad EDS

Higher spatial resolution Lower beam currents -> less signal (filtering needed) or longer measurements

Lower solid angle due to larger sample-detector distance Higher beam currents -> more signal or shorter measurements EDS spatial resolution not affected due to longer WD

Innovation with Integrity