Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Guest speaker: Michael Malaki

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor NémethApplication Scientist EDS
Bruker Nano Analytics

Michael Malaki
phD candidate
Materials Sciences Center
Faculty of physics
Phillips University Marburg

Outline

EDS instrumentation for battery research

Igor NémethBruker Nano Analytics

 Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Michael Malaki Phillips University Marburg

Comparison of STEM-EDS and SEM-EDS

Igor NémethBruker Nano Analytics

Bruker Nano GmbH, EDS instrumentation for battery research

Dr. Igor Németh

Requirements, tools and methods of EDS analysis for battery research

- High solid angle X-ray collection in SEM and in STEM
 - -> sufficient data quantity for thin FIB lamellae samples
- Hypermap: measure data and process later
 - -> element distribution maps, line profiles
- Deconvolution:
 - -> Real distribution maps (also for overlapping peaks)
 - -> Quantification of spectra and maps
- In situ measurements: EDS at elevated temperatures

Geometric constraints in SEM and STEM: Solid and take-off angle are important to consider!

Tools of EDS analysis: Hypermap

Save data as **Hypermap** and **process later**:

Extract spectra:

- -> prove presence/absence of elements
- -> Calculate quantitative concentration values

Extract line profiles:

-> Quantitative line profiles

Quantitative element distribution maps

EDS in situ / at elevated temperatures

TEM: 11mm sample - detector distance

Challenges:

Thermal radiation -> noise > high background below 2keV: detection of light elements affected

This effect depends on:

- sample-detector distance
- detector window material

SEM: 25mm sample - detector distance

Possibilities:

- Spectra: monitoring of element lines
- Mapping: Phase changes, segregations

J. T. van Omme et al., Ultramicroscopy 192 (2018) 14-20

3 kV

Jane Y. Howe (ORNL), Christianne Beekman (Florida St. Uni)

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor NémethApplication Scientist EDS
Bruker Nano Analytics

Michael Malaki
phD candidate
Materials Sciences Center
Faculty of Physics
Phillips University Marburg

Significance of STEM-EDXS Analysis in the Characterization of Rechargeable Battery Components

Dr. Igor NémethApplication Scientist EDS
Bruker Nano Analytics

Michael Malaki
phD candidate
Materials Sciences Center
Faculty of Physics
Phillips University Marburg

SEM 20kV

In-lens image WD=8mm

SEM 20kV

SE image with inserted FlatQUAD WD=16mm

Images taken under measurement conditions optimized for EDS analysis

Image quality does not affect EDS resolution on this scale!

STEM 200kV 60 mm² EDS detector

SEM 20kV 60 mm² EDS detector

SEM 20kV FlatQuad detector

Total measurement time= 8 mins Beam current= 0.2 nA Input count rate ~ 1 kcps

Total measurement time= 34 mins Beam current=2 nA Input count rate ~ 30 kcps

Total measurement time= 34 mins Beam current= 2 nA Input count rate ~ 460 kcps

STEM 200kV 60 mm² EDS detector

SEM 20kV 60 mm² EDS detector

SEM 20kV FlatQuad detector

STEM 200kV 60 mm² EDS detector

SEM 20kV 60 mm² EDS detector

SEM 20kV FlatQuad detector

What additional information EDS reveals

SEM 20kV 60 mm² EDS detector

STEM-EDS vs. SEM-EDS vs. SEM-FlatQuad EDS

sample-detector distance

Higher beam currents -> more

signal or shorter measurements

Lower beam currents

or longer measurements

-> less signal (filtering needed)

affected due to longer WD

Innovation with Integrity