

Cultural Heritage Under the Microscope: Getting to the Fine Detail with Advanced Elemental Analysis by Scanning Electron Microscope

Art & Conservation Webinar Series Cultural Heritage Under the Microscope

If you have questions during this webinar, please **type your questions**, thoughts, or comments in the **Q&A box** and **press Send**.

We ask for your understanding if we do not have time to discuss all comments and questions within the session.

Any unanswered questions or comments will be answered and discussed by e-mail or in another WebEx session.

Art & Conservation Webinar Series On-demand and upcoming

Currently available on-demand at www.bruker.com

- ELIO, Portability and Flexibility in Art Studies Hear our Experts' Voice
- XRF Data Processing in Art and Conservation with ESPRIT Reveal
- TRACER: The Benchmark in Handheld-XRF for Cultural Heritage
- New Horizons of micro-XRF in Art and Conservation
- Flexible and portable XRF mapping solutions for Art and Conservation: Bruker's ELIO and CRONO spectrometers

Coming soon

- The M6 JETSTREAM in Art & Conservation a view from the field
- Approaching analysis by Handheld-XRF in cultural heritage studies (3 events)

SEM-EDS analysis in Cultural Heritage studies

Max Patzschke Application Scientist EDS

Bruker Nano Analytics Berlin, Germany

Dr. Nigel Kelly Senior Market Applications Scientist

Bruker Nano Analytics Denver, CO, USA

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

SEM-EDS analysis in Cultural Heritage studies Why Scanning Electron Microscopy?

- The high spatial resolution afforded by SEM analysis makes this technique the standard for many areas of characterization and research in cultural heritage
 - Imaging (e.g., SE, BSE)
 - 1-D and 2-D elemental analysis (e.g., EDS, WDS)
 - Structural analysis of natural and synthetic materials (e.g., EBSD)

Pigments

Application areas

- Ceramics
- Archaeometallurgy
- Stone tools and obsidian sourcing
- Pigment and paint analysis

Focusing the analytical workflow

Giovanni Maimeri, Trigliee acciughe

Focusing the analytical workflow

HH-XRF

the second second

µXRF / MA-XRF

Compositional average of 3-8 mm spot area

Bulk analysis / Surface coatings / Mixtures High-resolution at single spot (2mm – <20 μ m), 2-D mapping

Fine features / Spatial variations / Mixture due to information depth Highest resolution at the scale of ${\sim}\mu m$ – nm spot

Extraction detail of finest features / Spatial compositions

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

SEM-EDS analysis in Cultural Heritage studies **Webinar Outline**

- Brief introduction to Energy Dispersive Spectroscopy using the Scanning Electron Microscope
- Three examples of use in cultural heritage studies
 - Archaeological ceramics (furnace crucibles)
 - Paint cross-sections
 - Obsidian artefact analysis by SEM-based micro-XRF (based on work of Meredith Sharp & others at the Smithsonian Institution)

SEM-EDS ANALYSIS

Bruker Scanning Electron Microscope Analyzers **Our "evolving eyes**"

- µXRF: Micro X-ray Fluorescence
- WDS: Wavelength Dispersive Spectroscopy
- EBSD: Electron Backscatter Diffraction
- EDS / EDX: Energy Dispersive
 Spectroscopy

EDS (FlatQUAD)

Beam – specimen interaction

cps/e\

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Advantage of high take-off angle and annular design **XFlash® Flatquad**

- Annular design, 4x15 mm² = 60 mm²
- Placed between pole piece and sample (hole in the center for the primary beam)
- Energy resolution Mn Ka ≤ 129 eV
- Combination of high count-rate capability and high solid angle (W ~ 1.1 sr)

Internal SEM view

Annular detector arrangement

Advantage of high take-off angle and annular design **XFlash® Flatquad**

BRUKER

Conventional SDD

XFlash® FlatQUAD

Elemental map overlying a secondary electron image showing distribution of mineral components

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Not just an image but a data cube **Hypermap**

- A spectrum is saved for every pixel in the element map
- This data is accessible at any time after the map is completed
- Enables on- and offline processing
- Live background removal and deconvolution
- Fast quantification of pixels across the entire map (Qmap)

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Collecting large area Hypermaps **Image extension**

- From a central stage
 position the number
 of x/y frames can be
 defined to complete
 a map at any
 magnification
- Result: fields are stitched to form one Hypermap file
- Image extension for a full sample map with more than 20,000 x 15,000 pixels

Stitched single or mixed element intensity maps

HV: 15 kV Pixels: 800 x 1050 Time: 28 min Dwell time: 2048 μs FOV: 16 mm Pixel size: 15 μm Fields: 8 x 14 (112) Magnification: 200x

Collecting large area Hypermaps Rapid map collection using FlatQUAD®

1.7 μm px, 1024 μS / px, total 256 s

1.7 μm px, 32 μS / px, total 8 s

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Example 1: Imaging and elemental mapping of archaeological ceramics

Archaeological Ceramics and Ceramics as Fine Art

- Ceramics are very diverse and range from earthenware used for utilitarian purposes, to high art porcelains, and all areas in between
- Key questions (among many):
 - Method of manufacture
 - Origins of materials and artifacts (archaeological, historic artisans and factories, authenticity)
 - A window in other technologies & methods
 - Sourcing and dating

porcelain

crucible

Layered ceramic

Image credits: Prof. Aaron Shugar (Buffalo State College), Prof. Philippe Colomban (Sorbonne University)

Example 1: Archaeological ceramics

(samples courtesy of Prof. Aaron Shugar)

- Ceramics used in the process of smelting and refining metals
 - furnace walls
 - crucibles

Crucibles

Replicating ancient smelting methods Buffalo State College

- BRUKER
- Sample 1: Chalcolithic era copper smelting vessel (Israel)

 Sample 2: Modern iron smelting experiment (Buffalo Sate College)

© 2021 Bruker

© 2021 Bruker

- "Image extension" whole mount EDS map of the ceramic fragment (23 x 9 mm)
 - 15 x 58 fields, 1.5 µm pixel size, 24 mins
 - Full hypermap enables data mining

- Mapping individual fields allows even further detailed data interrogation
- 2 examples

Inner vessel wall,
 including metal
 remnants of the
 smelting process

2) Boundary between the weakly fired outer vessel wall and recrystallized inner domains

100x mag. 1327 x 968 μm² 1.1 μm pixel size 64 μs / px 10 cycles 11 min meas. time

350x mag. 379 x 276 μm² 0.3 μm pixel size 427 μs / px, 3 cycles 23 min meas. time

Vessel

wall

Archaeological ceramics Chalcolithic copper smelting vessel

BRUKER

370x mag., 1200 x 900 μ m², 0.27 μ m pixel size, 13 μ s / px, 44 cycles, 10 min meas. time

BSE

- Mosaic Backscattered Electron Image
- Image extension element maps record extraordinary detail

- Mosaic Backscattered Electron Image
- Image extension element maps record extraordinary detail

- Mosaic Backscattered Electron Image
- Image extension element maps record extraordinary detail

100x mag., 1327 x 968 μ m², 1.7 μ m pixel size, 64 μ s / px, 20 cycles, 10 min meas. time

 Detail on recrystallization processes are revealed in detailed BSE and element maps

120x mag., 1106 x 806 μ m², 1.4 μ m pixel size, 64 μ s / px, 20 cycles, 10 min meas. time

BSE C Si Fe

130x mag., 921 x 691 μ m², 0.77 μ m pixel size, 4 μ s / px, 148 cycles, 10 min meas. time

130x mag., 921 x 691 μ m², 0.77 μ m pixel size, 4 μ s / px, 148 cycles, 10 min meas. time

130x mag., 921 x 691 μ m², 0.77 μ m pixel size, 4 μ s / px, 148 cycles, 10 min meas. time

Experimental iron ore smelting vessel

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES ER ER See 200 µm Ch 1 C Si MAG: 2300x HV: 6 kV WD: 11,6 mm Px: 13 nm

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Example 2: Getting to the detail of pigment components – Da Vinci's *The Last Supper*

Optical light image of the paint cross-section sample (mounted in epoxy)

- The wall painting of The Last Supper was executed by Leonardo for the Refectory of Santa Maria delle Grazie in Milan between 1494 and 1498.
- Sample provided courtesy of the ArtIS Laboratory, Politecnico di Milano, through collaboration with Dr. Marta Ghirardello

- SEM EDS analysis conducted using
 - Field Emission SEM
 - XFlash[®] FlatQUAD annular detector

- Preparatory layers of calcite (CaCO₃) mixed, Pbwhite (2PbCO₃·Pb(OH)₂), and "Magnesium"
- Interior and exterior red layers: pigment mixtures that include Si, Al, K, Fe.

S Ca Pb

- Mapping at this scale reveals the intricate and complex mixtures
- Spectra can be extracted from each pixel in the map for element identification and quantification

270

200

Resolving peak overlaps in spectra and maps Deconvolution

- What is deconvolution?
 - Treat a spectrum as a mathematical function (f) which is the sum of **n** individual spectra, where **n**=number of elements present in the spectrum
 - Calculate the individual functions by minimizing the difference between the original function and the sum of individual functions

150

2.20

2,40

cps/el

SEM-EDS ANALYSIS IN CULTURAL HERITAGE STUDIES

Resolving peak overlaps in spectra and maps Deconvolution

- Overlapping elements like Pb/S/Mo can be separated during map acquisition and in the spectrum
- Reveals true element distribution and correct identification of pigment components

- BRUKER
- Detailed view of the preparation and base layers
 - Ca: limestone (calcite)
 - Mg: Nesquehonite (MgCO₃.3H₂O)
 - Pb: some distributed particles of Pb-white (2PbCO₃·Pb(OH)₂)

- Mixed components red ochre with sand?
 - Si: quartz
 - Si + K + Al: feldspar
 - Fe: red ochre

- Readily identified the main components of the cross section, even at "low" magnification
 - Calcite, magnesium, Pb-white preparation layers
- Composition of the bright red layer close to the top of the section aligns with Red Lake pigment compositions
 - Correlates with UV images (see right)
- Additional element maps demonstrate the complexity of mixtures used in additional redbrown pigment layers

Example 3: Integrating SEM-based µXRF with electron-beam EDS analysis: A study of large-scale Mesoamerican obsidian tablets

<u>Application study</u> by Meredith Sharps¹, Marian Martinez², Michael Brandl³, Thomas Lam¹, Edward Vicenzi¹ ¹Smithsonian Institution, Museum Conservation Institute; ²National Museum of the American Indian, Cultural Resources Center; ³Institute for Oriental and European Archaeology, Austrian Academy of Sciences For more information: *Sharps et al.* (2021). Journal of Archaeological Science: Reports, 35, 102781

µXRF in the SEM Expanding elemental capabilities

- Limitation of electron source in elemental analysis
 - Best excitation at lower energies
 - Limited ability to excite higher energies characteristic of key trace elements

 X-ray source unlocks access higher energy X-ray lines, and when combined with EDS using an electron source gives the best of both worlds

µXRF in the SEM Expanding elemental capabilities

- Limitation of electron source in elemental analysis
 - Best excitation at lower energies
 - Limited ability to excite higher energies characteristic of key trace elements

 X-ray source unlocks access higher energy X-ray lines, and when combined with EDS using an electron source gives the best of both worlds

μXRF in the SEM Rapid mapping using the sub-stage

For more information, look for our webinars on the XTrace and rapid mapping stage on demand at www.bruker.com/webinars

µXRF in the SEM Rapid mapping using the sub-stage

Polished Section: 45 x 30 mm

Tube Voltage: Rh at 50 kV Anode Current: 600 µA Pixel Spacing: 25 µm Analytical Time: 101 mins

For more information, look for our webinars on the XTrace and rapid mapping stage on demand at www.bruker.com/webinars

Example: Tandem analysis of large, Mesoamerican obsidian mirrors by SEM-based EDS and micro-XRF

- Obsidian is volcanic glass formed due to rapid eruption and crystallization of lava
- Homogeneous within a flow, but preserve compositions that are distinctive between locations, which allows artefacts to be matched to probable raw source material locations

Sharps et al. (2021). Journal of Archaeological Science: Reports, 35, 102781

Example: Tandem analysis of large, Mesoamerican obsidian mirrors by SEM-based EDS and micro-XRF

- Obsidian is volcanic glass formed due to rapid eruption and crystallization of lava
- Homogeneous within a flow, but preserve compositions that are distinctive between locations, which allows artefacts to be matched to probable raw source material locations
- The assumption of homogeneity is not always founded, so more detailed observations may be required
 - SEM imaging
 - Micro-XRF compositional analysis

nal of Archaeological Science: Reports, 35, 102781

Example: Tandem analysis of large, Mesoamerican obsidian mirrors by SEM-based EDS and micro-XRF

Black, with gray flow banding

Homog., black

20 cm

- Polished obsidian "mirrors" likely sourced from the Trans-Mexican Volcanic Belt
 - Such artefacts were produced from pre-Columbian through to colonial times
 - Previously analyzed by pXRF

- "Tandem beam" SEM
 - Electron-beam source
 - XTrace µXRF source
 - Characteristic X-rays from both sources measured with Bruker XFlash[®] 6|60 SDD detector
 - Ran under variable pressure conditions

Images courtesy of Michael Brandl, modified from Martinez et al., 2021, Sharps et al., 2021)

Innovation with Integrity

25 June 2021

55

Example: Tandem analysis of large, Mesoamerican obsidian mirrors by SEM-based EDS and micro-XRF

- Expected rhyolitic composition
 - Alkali elements separate Pachuca from other sources
 - Shows tablets are more closely related to the Los Azufres source

- Trace element ratios (Fe/Mn vs Rb/Sr) link
 - Samples 1 and 2 to the Ucareo source
 - Sample 3....

Sharps et al. (2021). Journal of Archaeological Science: Reports, 35, 102781

Example: Tandem analysis of large, Mesoamerican obsidian mirrors by SEM-based EDS and micro-XRF

- Canonical discriminant analysis based on trace elements
 - Samples 1 and 2 confirmed to be related to the Ucareo source
 - Sample 3 aligns with Jeraguaro source compositions

Summary

- Scanning Electron Microscopy with new generation detectors and technologies allows data to accessed across scales easily
- Energy Dispersive Spectroscopic analysis can be applied across a range of applications in cultural heritage studies providing information down the smallest details but informing data interpretations across the workflow
- Flexible detector solutions mean implementation across almost any platform, from the most sophisticated instruments to benchtop solutions.

Questions, Thoughts or Comments?

If you have questions please **type your questions**, thoughts, or comments in the **Q&A box** and **press Submit**.

We ask for your understanding if we do not have time to discuss all comments and questions within the session. Any unanswered questions or comments will be answered and discussed by e-mail or in another Webex session.

For more information please contact us

Michele.Gironda@bruker.com Market Segment Manager Art & Conservation

nigel.kelly@bruker.com

Senior Applications Scientist Art & Conservation

Max.Patzschke@bruker.com Applications Scientist EDS

Innovation with Integrity

Innovation with Integrity