

Quantification of Steels and Alloys using a dual source multidetector system. Part II: SEM-WDS adding to XRF-EDS and SEM-EDS analysis

Bruker Nano Analytics, Berlin, Germany Webinar, April 29, 2021

Presenters

Andrew Menzies, PhD

Sr. Applications Geology and Mining, Bruker Nano Analytics, Berlin, Germany

Dr. Michael Abratis Sr. Applications Scientist WDS, Bruker Nano Analytics, Berlin, Germany

Overview Quantification of Steels and Alloys

Webinar structure

- Part I of the webinar series focused on the dual-beam sources (electron and X-ray source), and how they interact
 with the samples of interest to generate X-rays which are identified and quantified using EDS.
- Part II will now compare the earlier results with the measurements using the WDS collected on the same system.
- Multi method approach
- SEM WDS Introduction
- Samples and Methods
- Application to Steels and Alloys
- Summary and Conclusion

Webinar: Part I – available at: https://www.bruker.com/en/news-andevents/webinars/2021/XRF-EDS-and-SEM-EDS-Analysis.html

Overview Motivation for multi-method approach

- Why use different analytical techniques for steel analysis?
- Quantification of Steels and Alloys can be problematic due to the various elements of interest ranging from very low Z-numbers up to high Z-elements and the range of concentrations present from majors through to traces.
- E-beam excitation / EDS detection:
 - Very good low Z-element sensitivity / spatial resolution
 - Relatively high spectral background / limiting in sensitivity
- X-ray excitation / EDS detection:
 - Low spectral background / high sensitivity for higher Z-elements
 - Limitation in spatial resolution/ light element detection
- E-beam excitation / WDS detection:
 - High spectral resolution; improved P/B ratio compared to e-beam / EDS
 - Sequential analysis (one element at a time)

BRUKER

Excitation: X-ray and electron beam **Detectors: EDS and WDS**

FEG SEM

Dual source excitation: e-beam X-ray beam

> Dual Detectors: EDS WDS

What have we learned from Part I ? Combined Analysis of Steel

BRUKER

Sample 32: AISI 422-205B

Element	Certified	MicroXRF	SEM-EDS	Combined	
С	0.22				SEM-
Ν	0.05				FDS/WDS
Al	0.01				
Si	0.37		0.34	0.33	Low-Z
P	0.01				elements
S	0.00				
Ti	0.00	0.003		0.00	
V	0.26	0.279		0.26	
Cr	11.72	11.084	11.37	11.32	
Mn	0.68	0.797	0.87	0.75	SEM-XRF
Fe	83.70	83.243	84.55	83.20	Ligh 7
Со	0.03	0.024	0.49	0.02	High-Z
Ni	0.70	0.692	0.54	0.67	elements
Cu	0.15	0.177		0.15	
Nb	0.02	0.012		0.01	
Mo	0.97	0.970	0.95	0.94	

Analysis of Steels and Alloys: Combined Quantification

- If both electron and X-ray excitation are available, the benefits of both methods can be combined. That is:
- 1. better light element sensitivity of electron excitation, e.g., from C to Si typically have smaller statistical error and better sensitivity,
- 2. better trace element sensitivity for heavy elements of X-ray excitation
- Thus, the results for each quantification method can be calculated seperately, and then the results for the elements with better sensitivity and accuracy are used to calculate an improved combined quantification.
- However, it is still possible to improve the results with the addition of SEM-WDS
- <u>Note</u>: the sample has to fulfil the requirements for both excitation types, i.e., the sample needs to be conductive and polished and has to be homogeneous

QUANTAX WDS System Components

- Spectrum, P/B-acquisition in 'Spectrum' and 'Objects' mode
- Mapping and LineScan
- Quantification (SB, coupled quant possible)
- Device control
- ... all integrated in the Esprit GUI

Contraction into

Introduction **Motivation for WDS application in steel analysis**

Determine traces of low-Z elements in steel Contents of Al, Si, P, S

Determine light elements in steelContents of N, C

Resolve spectral overlaps in steel
Peak overlaps of W-M with Si-K; Mo-L with S-K

Resolve spatial sample heterogeneitiesSmall-scale elemental variations, e.g. C

Analysis of Steels Samples

Steel & iron set I (ARMI)

- 15 Cr-Ni steels, 14 irons
- Variable major and trace element contents
- Certified compositions

Steel set II (ACX)

- 15 Cr-Ni steels
- Variable major and trace element contents
- Certified compositions

QUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Analysis of Steels Samples

- > Major Elements:
- Cr, Fe, Mn, Ni
- Minor and Trace Elements:

C, N, Al, Si, P, S, Ti, V, Co, Cu, Nb, Mo, Sn, W

Element	Minimum(%)	Maximum(%)	Range(%)	
С	0.02	1.02	1.00	
N	0.01	0.33	0.32	
Al	0.00	1.16	1.16	
Si	0.27	1.38	1.11	
P	0.01	0.04	0.03	
S	0.00	0.29	0.29	
Ti	0.00	0.63	0.63	
V	0.02	0.26	0.24	
Cr	11.72	23.60	11.88	
Mn	0.35	9.31	8.96	
Fe	41.29	86.23	44.95	
Со	0.02	0.18	0.17	
Ni	0.11	35.84	35.73	
Cu	0.03	0.47	0.44	
Nb	0.00	0.72	0.72	
Мо	0.06	2.30	2.25	
Sn	0.00	0.01	0.01	
W	0.01	1.10	1.09	
Total	100.00	100.00	0.00	

WDS methodology Major elements in steel

- WDS designed for highest efficiency
 in low X-ray energy region
- Fe, Cr, Ni determination on L-lines
- Energy selective technique → sequential acquisitions
- Acquisitions on reference material necessary
- Major elements equally covered by EDS, micro-XRF
- Possible but not required by WDS

BRUKER

WDS methodology Trace elements in steel

- Better peak resolution
- High peak to background ratios
- Low detection limits
- Especially for lines < ~2 keV (complements µXRF)
- Time effort rewarded by high precision and accurracy

WDS methodology **Two different acquisition modes**

35

30

25

20

15

10

5

0

2.40

WDS cps

Suitable for qualitative determination

= intuitive, convincing presentation

Suitable for quantification

= faster acquisition, better statistics

-Steel 1 -Steel_2 -Steel 3

Mo

Methodology Standard-based quantification

- o Compare to reference (standard) net peak intensities
- o Acquire at identical conditions (geometry, acceleration voltage)
- o Record beam current value
- o Correct for matrix effects (ZAF)

$$\frac{C_i^S}{C_i^{Std}} \propto \frac{N_i^S}{N_i^{Std}} \frac{(k_Z k_A k_F)_{i,S}}{(k_Z k_A k_F)_{i,Std}}$$

QUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Trace element determination by WDS Silicon (Si-K α)

Trace element determination by WDS Silicon (Si-K α)

Focus on lowest concentrations (0.2 – 0.7 wt.%)

Peak resolution by WDS Tungsten (W-M α) and Silicon (Si-K α)

QUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Trace element determination by WDS Phosphorous (P-Kα)

Accepted values (wt.%)

Innovation with Integrity | 29 April 2021 | 19

OUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Trace element determination by WDS Molybdenum (Mo-L α)

Peak resolution by WDS Molybdenum (Mo-L α) and Sulfur (S-K α)

OUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Trace element determination by WDS Sulfur (S-K α)

S wt.%

BRUKER

Light element determination by WDS Nitrogen (N-K α) with BRML60

N wt.-%

Light element determination by WDS Nitrogen (N-K α) with BRML80

0.30 WDS Results: Range: Background related offset Measured values (wt.%) 0.25 y = 0.6301x + 0.075N: 0.01 – 0.33 wt.% BRML80 option $R^2 = 0.966$ high sensitivity 0.20 precise 0.15 but offset 1.**...** background 0.10 0.05 0.00 0.25 0.00 0.05 0.10 0.15 0.20 0.30

Accepted values (wt.%)

80% < 600 ppm BRML80 250 cps/nA P/B:39 @N-Kα, 10kV, BN

Background: Sc-La @ 395 eV

N wt.-%

Light element determination by WDS Nitrogen (N-K α) with BRML80

0.30 WDS Results: Range: +10%Offset corrected Measured values (wt.%) 0.25 -10% N: 0.01 – 0.33 wt.% BRML80 corrected y = 1.0001x - 5E - 050.20 $R^2 = 0.966$ accurate and 80% < 600 ppm 0.15 precise 0.10 BRML80 250 cps/nA 0.05 P/B:39 @N-Kα, 10kV, BN 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Background corrected Accepted values (wt.%)

N wt.-%

Light element determination by WDS Nitrogen (N-K α) with BRML80

Accepted values (wt.%)

Innovation with Integrity | 29 April 2021 | 26

QUANTIFICATION OF STEELS AND ALLOYS USING A DUAL SOURCE MULTIDETECTOR SYSTEM

Light element determination by WDS Carbon (C-K α)

Light element determination by WDS Carbon contamination during sample analysis

Carbon contamination on a steel sample surface

Light element determination by WDS Carbon contamination over time

Light element determination by WDS Heterogeneous carbon distribution

Carbide bearing steel

Dual phase steel

Element	SEM-EDS
	initial
С	
N	
Al	
Si	
Р	
S	
Ti	
V	
Cr	
Mn	
Fe	
Со	
Ni	
Cu	
Nb	
Мо	

Element	SEM-EDS	MicroXRF	SEM-EDS
	initial	iterative	refined
С			
N			
Al			///////////////////////////////////////
Si			
Р			
S			
Ti			
V			
Cr			
Mn			
Fe			
Со			
Ni			
Cu			
Nb			
Мо			

0.44

0.448

Methodologies Combined analy

ned a	nal	ysis pr	ocess							
EM-EDS		MicroXRF	SEM-EDS	SEM-WDS	SEM-EDS	SEM-WDS	MicroXRF	SEM-EDS	Element	Final
initial		iterative	refined	combined	combined	refined	refined	refined		combined
				≤ 0.36		≤ 0.36			С	≤ 0.36
				0.02		0.02			Ν	0.02
				0.00		0.00			Al	0.00
0.36			0.36	0.328	0.36	0.328		0.36	Si	0.35
				0.029		0.029			Р	0.03
				0.013		0.013			S	0.01
		0.002					0.002		Ti	0.002
		0.059					0.059		V	0.058
17.09		17.496	17.09		17.09		17.496	17.09	Cr	17.41
1.92		1.788	1.92		1.92		1.788	1.92	Mn	1.74
69.33		70.713	69.33		69.33		70.713	69.33	Fe	70.11
0.60		0.154	0.60		0.60		0.154	0.60	Со	0.14
8.86		9.012	8.86		8.86		9.012	8.86	Ni	9.00
0.50		0.501	0.50	0.458	0.50	0.458	0.501	0.50	Cu	0.49
0.74		0.695	0.74		0.74		0.695	0.74	Nb	0.67

0.44

0.393

0.448

0.393

0.44

Мо

0.42

Element SEM-I

С Ν Al Si

Ρ S Ti V Cr

Mn

Fe

Со

Ni

Cu

Nb

Мо

0.44

initi

Analysis of Steels and Alloys Combined Analysis

Sample 32: AISI 422-205B

	Combined	SEM-EDS	MicroXRF	SEM-WDS	Certified	Element
SEM-WDS	≤ 0.34			≤ 0.34	0.22	С
	0.05			0.05	0.05	Ν
Low-Z	0.00			0.004	0.01	Al
elements	0.34	0.34		0.339	0.37	Si
	0.02			0.018	0.01	Р
	0.00			0.029	0.00	S
	0.00		0.003		0.00	Ti
	0.26		0.279		0.26	V
	11.32	11.37	11.084		11.72	Cr
SEM-XRF	0.75	0.87	0.797		0.68	Mn
High_7	83.20	84.55	83.243		83.70	Fe
High-Z	0.02	0.49	0.024		0.03	Со
elements	0.67	0.54	0.692		0.70	Ni
	0.17		0.177	0.162	0.15	Cu
	0.01		0.012		0.02	Nb
aetection	0.97	0.95	0.970	0.919	0.97	Мо

Analysis of Steels and Alloys Combined Analysis

Sample 28: AISI 347-8D

Element	Certified	SEM-WDS	MicroXRF	SEM-EDS	Combined	
С	0.05	≤ 0.36			≤ 0.36	SEM-WDS
N	0.02	0.02			0.02	
Al	0.00	0.00			0.00	Low-Z
Si	0.36	0.328		0.36	0.35	elements
Р	0.03	0.029			0.03	
S	0.03	0.013			0.01	
Ti	0.00		0.002		0.002	
V	0.06		0.059		0.058	
Cr	17.30		17.496	17.09	17.41	
Mn	1.76		1.788	1.92	1.74	SEM-XRF
Fe	69.33		70.713	69.33	70.11	High_7
Со	0.14		0.154	0.60	0.14	
Ni	9.19		9.012	8.86	9.00	elements
Cu	0.47	0.458	0.501	0.50	0.49	
Nb	0.72		0.695	0.74	0.67	
Mo	0.44	0.393	0.448	0.44	0.42	

BRUKER

Summary and Conclusions QUANTAX WDS Benefits

High spectral resolution

- Pathological EDS peak overlaps can be resolved (e.g. Si-W, Mo-S)
- High peak to background ratio leads to low detection limits (e.g., Al, Si, P)

High perfomance for low X-ray energies

- Analysis of light elements (e.g. C, N)
- Trace contents for low-Z elements (e.g., Al, Si, P)

High spatial resolution

- Allows analysis of sub-µm structures (e.g., carbides)
- Full performance also at low kV (e.g., 2-10 kV)

Summary and Conclusions: Analysis of Steels and Alloys

X-ray and Electron Excitation can work in combination to provide improved quantitative results, using the benefits of each. Specifically:

- Electron excitation is preferable for light elements, e.g. C to Si
- > X-ray excitation is preferable for heavy elements and trace concentrations

Samples can be analysed and quantified either as spot (point) analyses or from hypermaps.

Benefits of each analytical method can be utilised. For example:

- > **Micro-XRF:** Sample Preparation is minimal for micro-XRF
 - No carbon-coating, No polishing
- > **Electron Beam**: High resolution for detecting small inclusions
- > WDS: High spectral and spatial resolution, high perfomance for low X-ray energies

Thank you!

Michael Abratis michael.abratis@bruker.com

More Information

For more information, please contact us:

Bruker Nano GmbH

info.bna@bruker.com

If you want to learn more about practical micro-XRF or SEM-EDS / WDS analysis including sample, measurement setup, and evaluation, our latest video series is available via the Bruker website and youtube

Product Videos

Part I - Introduction to micro-XRF and the Rapid Stage on a SEM

Part II - Loading a sample and performing a measurement

Part III - Analyzing a measured dataset

Rapid Stage

and

•

Questions and Answers

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Innovation with Integrity

Innovation with Integrity