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XRD in Mining:  
Standardless Processing of Large Datasets with Rietveld 
Refinement and Cluster Analysis

Abstract

X-ray diffraction (XRD) provides a wealth of structural infor-
mation, particularly in naturally occurring geological forma-
tions where multiple phases may be present in the same 
sample. Mining and drilling operations with high sample 
throughput can benefit from standardless analysis tools, 
particularly in cases where the majority of samples possess 
similar compositions. These tools include batch processing 
of quantitative mineralogy (DIFFRAC.TOPAS) and clustering 
of diffractograms (DIFFRAC.EVA).

Introduction

XRD is a powerful technique for structural analysis of miner-
alogical species. In addition to providing for the identification 
of distinct crystalline phases and polymorphs, analysis by 
XRD also enables quantification of complex mixtures and the 
detection of structural changes, such as lattice expansion in 
swelling clays and cationic substitution in carbonates. For 
complete unknowns, data analysis is typically approached 
in two-steps: (1) phase identification by matching observed 
reflections to a database of known patterns and (2) quanti-
fication of selected phases, frequently with Rietveld refine-
ment, using structural information for each identified phase. 

Figure 1. D8 ENDEAVOR process diffractometer.



Exhaustive processing of individual diffractograms, however, 
is beyond the scope of many mining operations, particularly 
in automation environments and at sites that generate a large 
volume of data. Here, the primary goal might be routine anal-
ysis for quality control or the identification of statistical outli-
ers.

In this report, we describe the analysis of two distinct sets 
of mineral samples – shale rock formations and copper ore 
bodies. In the former, varying clay and carbonate concentra-
tions might lead to specific steering decisions or well treat-
ments. In the latter, diffraction studies might be applied to 
identify higher concentration regions of desirable ore miner-
als.

A separate refinement model was developed for each 
sample set and then applied to each diffractogram via batch 
processing with DIFFRAC.TOPAS. Quantitative Rietveld 
methodologies are exceptionally powerful and can account 
for a large number of variables, including preferred orienta-
tion effects, contrasts in absorption, and peak broadening 
associated with disorder or crystallite size reduction. Crystal-
lographic information can be imported from literature refer-
ences or structural databases, making it possible to quantify 
mineral mixtures even in the absence of physical standards. 
Well-defined models are extremely robust and can quickly 
process large numbers of scans.

Both datasets were also processed using the clustering algo-
rithms in DIFFRAC.EVA. In a sense, this can be considered 
a “standardless” approach, where no information is known 
or applied with regards to specific crystalline phases. Rather, 
in this situation, scans are assigned to groups based on simi-
larity, making it possible to quickly and easily identify sam-
ples of interest. For example, outliers might be flagged in a 
quality control setting for having significant variation in peak 
location or aberrant peak intensities. DIFFRAC.EVA allows 
prescreening of > 10,000 scans and single dataset clustering 
of up to 2,000 patterns, making this a useful tool for high-
throughput analysis and rapid identification of patterns that 
merit more detailed evaluation.

Experimental 

Samples were prepared by wet-milling in ethanol with a 
McCrone micronizing mill and agate media. Diffraction spec-
imens were prepared from the fine powders using back-
loading sample holders to minimize the effects of preferred 
orientation.

Data were collected using the D8 ENDEAVOR (Figure 1) pro-
cess diffractometer equipped with a motorized anti-scatter 
screen and robotic sample handling. The D8 ENDEAVOR is 
a floor-standing instrument that excels in a dedicated labora-
tory environment and is capable of handling up to seventy-
two (72) samples per load. The diffractometer was equipped 

Figure 2: 	(a) Waterfall plot and (b) 2D intensity map of data collected from shale rock cuttings. Diffractograms demonstrate similarity in both 
observed peak locations and intensities, indicating similar mineralogical compositions.

(a) (b) 



with a LYNXEYE XE silicon strip detector, which enables 
rapid data collection and suppression of sample fluores-
cence. Scans were collected in coupled Theta/Theta mode, 
allowing the samples to stay horizontal during data collection 
and minimizing sample spillage and cross-contamination.

Analysis

Phase identification was performed using DIFFRAC.EVA in 
conjunction with the ICDD PDF-4+ database. Data visuali-
zation was handled using the graphical functionalities and 
cluster analysis tools in DIFFRAC.EVA. Identified crystal-
line phases were quantified using Rietveld analysis with 
DIFFRAC.TOPAS. 

Case Study: Shale Rock Analysis

This work expands on a previous study of shale rock in the 
Duvernay formation. Initial studies focused on the devel-
opment and testing of quantification models with a limited 
number of samples. Data presented here represents drill cut-
tings taken in 10 m intervals over 1200+ m in a horizontal 
well. 

Collected data are shown in Figure 2. Viewing as a waterfall 
plot highlights the similarities in observed diffraction events, 
indicating concomitant similarities in mineralogical composi-
tion. Differences in peak intensities can be observed in the 
2D intensity map, with several noticeable bright spots asso-
ciated with the most intense calcite reflection (1 0 4).

Several sets of outliers are identified when processing 
through the clustering algorithms, as shown in the metric 
multidimensional scaling (MMDS) view shown in Figure 3. 
The majority of samples are clustered into the red group, 
indicating a high degree of data similarity. Several outliers are 
assigned to separate clusters: unsurprisingly, many of these 
are samples with more intense diffraction from calcite. This 
demonstrates the ease with which clustering approaches 
can quickly identify statistically different specimens, even in 
the absence – or prior to – detailed crystallographic analysis.

The refinement model developed in the previous study was 
applied via batch processing with DIFFRAC.TOPAS. Results 
for phase quantification are output in tabular format and can 
be easily converted to mineralogy tracks (Figure 4) using 
third-party software. A detailed investigation of the blue and 
green clusters reveals calcite concentrations ranging from 
17-38 wt% in contrast to the average calcite value for all 
samples (10 wt%).

Case Study: Copper Ore

In this case study, twenty samples of copper ore were taken 
from various mine site locations and analyzed for composi-
tional variance. As these samples did not have a prior quan-
tification model, crystalline phases were first identified with 
DIFFRAC.EVA and then added to a fresh refinement model 
in DIFFRAC.TOPAS. Diffractograms were handled in similar 
fashion to the shale rock samples (i.e., clustering by similarity 
and batch quantification using a single model). 

Figure 3: 3D MMDS plot for cluster analysis and data similarity. 
The majority of samples are assigned to the central (red) group, 
indicating strong correlation. Groups assigned to blue and green are 
identified at statistical outliers, which correspond to higher calcite 
concentrations relative to the average.

Figure 4: Mineralogy track for all shale samples generated 
by batch processing with Rietveld refinement. Phase quan-
tification is plotted along the x-axis, and measured depth is 
plotted along the y-axis.
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All collected diffractograms are shown in a waterfall plot 
in Figure 5: unlike the previously discussed shale cuttings, 
there are quite obvious differences in diffraction data. Clus-
tering assigns the data into four distinct groups, as shown 
in the dendrogram plot in Figure 6. A representative diffrac-
togram for each cluster is shown below the dendrogram, 
highlighting the significant differences in peak intensities for 
a number of reflections, which in turn indicate considerable 
variance in composition.

Quantitative Rietveld refinement of a single sample is shown 
in Figure 7. Identified phases include common minerals, 
such as quartz and calcite, as well as ore minerals, such as 
chalcopyrite. A single refinement model was applied to each 
diffractogram and weight percentages exported in tabular 
format.

In-depth Rietveld analysis reveals strong correlations 
between composition and clustering. Selected phases and 
weight percentages are shown in Table 1. The yellow clus-
ter, for example, has an average pyrite content of 23.7 wt%, 
which is more than double the average concentration for all 
samples (12.1 wt%). Chalcopyrite is an even more dramatic 
example of clustering effectiveness: green and blue groups 
both have a considerable amount of this mineral (28.9 and 
52.3 wt%, respectively). Red and yellow groups are both 
well under 10 wt%. This initial study establishes a firm basis 
for future analysis within this specific mining locale, as an 
expanded sample set can be easily sorted based on similar-
ity to existing clusters. This can be done fully automatically 
and an expert knowledges is not required.

Conclusions

Characterization of high sample volumes presents a number 
of unique challenges and can benefit from software tools 
designed to handle large datasets. By combining clustering 
approaches and batch processing of refinement models, it is 
possible to quickly handle a large number of diffractograms, 
identify outliers or samples of interest, quantify mineral con-
tent, and draw correlations between sample groups.

Total  
Average

Red 
Average

Yellow 
Average

Green 
Average

Blue 
Average

Quartz 31,4 49,9 33,5 19,7 3,9

Pyrite 12,1 4,7 23,7 17,3 10,3

Chalcopyrite 18,6 2,3 7,1 28,9 52,3

Figure 5: Waterfall plot for data collected from copper ore 
samples. Stark differences in relative peak intensities indicate 
large compositional variances.

Figure 6: . Dendrogram plot for cluster analysis of copper ore 
samples, indicating four distinct groups. Selected diffracto-
grams are shown below the dendrogram for reference, high-
lighting the differences in diffraction data between groups.

Figure 7: Quantitative Rietveld refinement with DIFFRAC.
TOPAS for a single copper ore sample. The contribution of 
each mineralogical phase to the total diffraction pattern is 
indicated in the colored traces below the diffractogram.

Table 1: Quantification for selected minerals with calculated 
averages for each identified cluster.


