

IVD

DNA•STRIP Technology

Convenient diagnostic assays

DNA•STRIP technology for dependable diagnostics

- Reliable
- Highly sensitive and specific
- Cost-efficient
- User-friendly

Innovation with Integrity

PCR

DNA•STRIP Technology

Assay principle

DNA•STRIPs are coated with specific probes which are complementary to the amplified nucleic acid (amplicon). After denaturation the single-stranded amplicon specifically binds to the probes (hybridization) and is visualized in a subsequent enzymatic colour reaction. As a result, a specific banding pattern develops on the DNA•STRIP. This procedure can be performed manually or can be automated.

Benefits of using the DNA•STRIP technology

Reliable: Internal controls document valid results, and secure safe and impeccable test procedures. Thus, a high diagnostic reliability is guaranteed. **Highly sensitive and specific:** The chosen targets of the different test systems ensure high specificity combined with maximum sensitivity. Cost-efficient: Only minimum technical equipment is needed for processing. This allows for a cost-effective implementation in all laboratories. User-friendly: In contrast to conventional methods, the DNA•STRIP technology saves valuable time and can easily be integrated in your laboratory routine.

Internal controls ensure valid results

The evaluation of the DNA•STRIP can easily be The combination of specific amplification and hybridperformed by aligning it to a template. With the ization guarantees a high level of diagnostic reliability. corresponding IFU the developed banding pattern can Internal controls ensure valid results: be interpreted accurately and guickly. This allows a • All DNA•STRIPs: The Conjugate Control documents reliable detection of the bacteria or genotype present the efficiency of the colour reaction. in the sample.

- Microbiological DNA•STRIPs: The additionally integrated Universal or Amplification Control shows that the test was performed correctly.
- Human genetic DNA•STRIPs: Gene site-specific Sensitivity Controls confirm the sensitivity of the hybridization reaction. If hybridization took place under unspecific test conditions, this is documented by the Specificity Control.

Sample preparation

Starting point of the analysis is a specimen from which the nucleic acid is extracted. The nucleic acid is selectively amplified in a subsequent PCR reaction. Since single-stranded nucleic acid is required for the next step, amplification is followed by a denaturation step.

Evaluation

Tests based on the DNA•STRIP technology

Human Genetics

ThromboType®	Factor V Leiden, Factor II G20210A
ThromboType [®] plus	Factor V Leiden, Factor II G20210A, MTHFR C677T, A1298C
GenoType CVD	Eight different thrombophilia-associated mutations
GenoType MTHFR	Most important MTHFR polymorphisms
GenoType ApoE	Alleles $\epsilon 2$, $\epsilon 3$, $\epsilon 4$ of the ApoE gene
GenoType PAI-1	Most important PAI-1 polymorphisms
GenoType HH	Hereditary hemochromatosis
GenoType AAT	Alpha-1-antitrypsin deficiency allele
GenoType LCT	Most important polymorphisms of the lactase gene
GenoType SugarTol	Polymorphism in lactase gene C-13910T and 3 polymorphisms
	in aldolase B gene
Microbiology	
Genolype MIBC	MTB complex differentiation from culture
Genolype CM <i>direct</i>	MTB complex, NTM differentiation from clinical specimens
GenoType Mycobacterium CM	MIB complex, NIM differentiation from culture
GenoType Mycobacterium AS	Further NTM differentiation from culture
GenoType NTM-DR	NTM differentiation, resistance to microlides and
	aminoglycosides from culture
GenoType MTBDR <i>plus</i>	MTB complex, resistance to rifampicin/isoniazid from clinical
	specimens and culture
GenoType MTBDR <i>sl</i> VER1.0	MTB complex, resistance to fluoroquinolones/aminoglycosides/
	cycl. peptides/ethambutol from clinical specimens and culture
GenoType MTBDR <i>sl</i> VER2.0	MTB complex, resistance to fluoroquinolones/aminoglycosides/
	cycl. peptides from clinical specimens and culture
GenoType LepraeDR	<i>M. leprae</i> , resistance to rifampicin/ofloxacin/dapsone
	from clinical specimens
GenoType MRSA	S. aureus, S. epidermidis, mecA, mecC, PVL from culture
GenoType HelicoDR	<i>H. pylori</i> , resistance to fluoroquinolones/clarithromycin
	from clinical specimens and culture
GenoType EHEC	Shiga toxins, virulence factors from culture
GenoType Enterococcus	Species differentiation, resistance to vancomycin from culture
micro-IDent [®]	5 periodontopathogenic bacterial species
micro-IDent®plus11	11 periodontopathogenic bacterial species

Please contact your local representative for availability in your country. Not for sale in the USA. ThromboType® and microIDent® are registered trademarks of the Bruker corporate group.

Hain Lifescience GmbH

Hardwiesenstrasse 1 72147 Nehren - Germany Phone +49 (0) 7473-9451-0

info.mdx.de@bruker.com - www.hain-lifescience.de