
Introduction 

Magnetic resonance imaging (MRI) is one of the most widely used imaging modalities in preclinical research as it 
provides multiparametric information about tissues and organs in a non-invasive way. The small dimensions of the 
animal organism require high spatial resolution which in turn translates into high demands on the signal-to-noise ratio 
(SNR).

MRI systems are designed to obtain images with high SNR by using magnets operating at high and ultra-high fields 
and use dedicated radiofrequency coils and scanner electronics. However, the quality of MR images can be affected 
by thermal object and receiver noise governed by individual hardware settings, type of tissue imaged, and sequence 
parameters. Noisy images may result from experimental conditions when: (i) small voxel volumes are used to spatially 
resolve specific structures (ii) averaging may either not be desirable or be practical, (iii) methods that require signal 
attenuation for contrast generation like diffusion MRI and relaxometry, or (iv) parallel imaging techniques are applied 
[Macovski 1996; Aja-Fernández 2014]. 

Images with high noise levels may pose an obstacle in visual interpretation and may result in a sensitivity that is too 
low to detect small signal changes, such as in functional MR experiments. In addition, processing techniques such as 
registration or conducting quantitative MRI e.g. tensor estimation in diffusion tensor imaging may be more challenging 
[Huang 2004]. Thus, denoising algorithms to improve both qualitative and quantitative measures of noisy images are 
increasingly exploited in the MRI field [Mishro 2022]. 

Smart Noise Reduction

With ParaVision 360 V3.6, Bruker introduced Smart Noise Reduction, a novel image reconstruction procedure to reduce 
and remove noise from MR images. The Smart Noise Reduction image reconstruction procedure is based on residual 
convolutional neural networks that have learned the structure of noise, which can be removed from the original data. The 
networks were trained using supervised learning, excluding any generative approach. A data-consistency factor allows 
for an adjustable denoising level, avoiding over-smoothing and maintaining image contrast. Using this data-consistency 
in combination with an iterative denoising (Pre-Denoising) technique, the quality of the final images can be substantially 
improved.  
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Figure 1: Smart Noise Reduction using different neuronal networks. A denoised 3D dataset was taken as ground truth (Reference) to which two 
varying levels of simulated noise were added, i.e. standard deviation (Std.) 0.05 and 0.1, respectively. Noisy data were subsequently reconstructed with 
the Quick, Strong, and Large networks. All data were denoised with a 100% denoising level and 50% pre-denoising. The area shown in the red box was 
selected for the similarity metrics in Table 1.

Performance Evaluation

The main challenge of performing denoising on structural MR images consists in reducing the amount of noise, while 
preserving the details, the edges, and in general the small structures that could be crucial for interpretation and analysis 
of the image. Moreover, the procedure should not introduce image artifacts or add features that are not actually present 
in the subject.

Noise Metric Quick Strong Large

Std. 0.05
PSNR 

SSIM

37.272 

0.9439

38.592 

0.9657

39.152 

0.9711

Std. 0.1
PSNR 

SSIM

34.239 

0.9332

35.380 

0.9483

35.939 

0.9531

Table 1: Quantitative comparison of performance of three neuronal networks for 
Smart Noise Reduction. For the SSIM index 0 indicates no similarity and 1 indicates 
perfect similarity. Bold indicates the best performing network.

The Smart Noise Reduction contains three neural networks differing in structure and size for the denoising procedure.  
While small network size (network Quick) has the fastest processing times, the more powerful structures (networks 
Strong and Large) reduce the requirements regarding noise characteristics. Exemplary denoising results of these three 
networks are shown in Fig 1. To demonstrate the effect of denoising with the different networks, a denoised 3D dataset 
was taken as reference. Two levels of simulated noise (Standard deviation 0.05 and 0.1) were added to the reference 
image which were then subsequently used as an input for the three denoising networks (Quick, Strong, and Large). All 
datasets were denoised with 50% pre-denoising and a denoising level of 100%.

In addition to the choice of network, it is also possible to select the denoising level. Fig. 2A demonstrates the effect 
of applying different levels of denoising for image reconstruction. Mouse brain data was acquired ex vivo, the original 
data was reconstructed without any denoising as well as with increasing denoising levels (70-100%). Increasing 
denoising levels yield images where noise is progressively removed. Importantly, no artifacts were introduced during the 
procedure. Computing a difference image between the source and 70% denoised images demonstrated that only noise 
is selectively removed. If the original signal at the edges of the images is lower due i.e. to bandwidth selection, high 
denoising levels (i.e. 90 and 100%) can lead to a blurry appearance of edges. Thus, the optimal denoising level, providing 
a trade-off between efficient noise removal and edge blurring, needs to be established individually for each data set or at 
least for each application protocol.  

To quantify the quality of the reconstructed 
images shown in Fig. 1, the Peak Signal to 
Noise Ratio (PSNR) and Structural SIMilarity 
(SSIM) index between the reference image 
and the data reconstructed with the three 
different networks were calculated (shown in 
Table 1). The selected area for the analysis is 
highlighted in Fig. 1. While implementation 
of the Large network provides the best 
performance, also the fast reconstruction with 
the Quick and Strong networks yield images 
of good quality.



The utility of Smart Noise Reduction was 
demonstrated on in vivo mouse data of 
different organs acquired at different magnetic 
field strengths (Fig. 2B-D). Compared to the 
reference images of the brain, kidney, and 
heart, reconstruction with 70% denoising 
provided images with significantly reduced 
noise and enhanced appearance of anatomical 
details and edges.

To test the performance of the denoising 
algorithm with images of different levels of 
tissue contrast, ex vivo data of a fixed mouse 
brain was acquired with a nominal voxel 
size of 55 x 55 x 800 µm3 at 3 Tesla, either 
with no averaging, 4, or 15 averages (Fig. 3). 
This corresponds to a contrast-to-noise ratio 
between the corpus callosum and cortex 
of 2.47±0.45, 4.59±0.01, and 12.03±0.81, 
respectively. Images were reconstructed 
without and with 70% and 100% denoising. 
Given the relatively high resolution, the image 
without averaging exhibits low tissue contrast 
and suffers from noise which can be mitigated 
by using averaging during acquisition or 
using denoising during image reconstruction. 
However, the comparison of denoised images 
acquired with different numbers of averages 
reveals that denoising can amplify spurious 
contrast in cases of low tissue contrast i.e. no 
averaging (Fig. 3, arrow). 
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Figure 2: The effect of image denoising on image quality. A) Applying increasing levels of denoising. Shown are axial images of a 3D T1-weighted 
FLASH ex vivo data of a fixed mouse head acquired at 9.4 Tesla without (Source) and different levels (70-100%) of denoising. A difference image between 
the source and 70% denoised images was computed. B)-D) Comparison of in vivo images reconstructed with no denoising and with 70% denoising. B) 
Coronal T2-weighted TurboRARE images of a mouse brain acquired at 3 Tesla. C) Coronal 3D FISP images of mouse kidney acquired at 7 Tesla. D) Short 
axis view of a mouse heart acquired with a flow-compensated triggered FLASH sequence at 9.4 Tesla. For different data, either no denoising (Source) or 
denoising using individual networks and a pre-denoising of 50% was applied (Denoised).

Figure 3: Denoising images with low tissue contrast. A) Axial T2-weighted TurboRARE 
images of a fixed mouse head were acquired at 3 Tesla with 1, 4 and 15 number of 
averages (NA), respectively. Images have a nominal voxel resolution of 55 x 55 x 800 µm3. 
Image reconstruction was performed without (Source) and with 70% and 100% denoising. 
Each denoised image was reconstructed with a network Strong and a pre-denoising of 
50% was applied. The arrows point to a structure in the NA1 images, that is faintly visible 
in the image that has not been denoised and that becomes more apparent with increasing 
denoising. The arrowheads point to the corpus callosum which becomes more visible. 
Resolution of fine structure requires high tissue contrast with averaging. 



Figure 4: Examples of fast brain scans. Ex vivo data of a fixed mouse head acquired with different image contrasts, geometries and orientations. Data 
were acquired at A) 3 Tesla, B) 7 Tesla, and C) 9.4 Tesla. Images were reconstructed with no denoising (Source) and with a network Strong and applying 
50% pre-denoising and a denoising level of 70% (Denoised).

Faster Imaging

The acquisition of MRI data is an inherently slow process and acquisition times increase with higher spatial resolution, 
when large volumetric coverage is required, and/or when multiple contrast images or quantitative data sets are 
collected. Obtaining high SNR data in reasonable acquisition time is highly desirable. Here, we showcase the use of 
Smart Noise Reduction for denoising of fast structural brain scans. 

Fig. 4 shows examples of ex vivo brain scans of different contrasts and orientations acquired in under 5 minutes. The 
data was acquired at instruments operating at 3, 7, and 9.4 Tesla. To achieve the desired short acquisition time, standard 
protocols prepared for each system were modified by removing averaging (Fig. 4A-C) This translated into 7-15 faster 
acquisition times compared to the original protocols. However, given the chosen resolution, no averaging resulted in 
noisy images. Reconstructing the acquired data with the denoising algorithm successfully removed noise from images 
and yielded images of high quality.

This structure that is faintly visible in the noisy image without using denoising but is not well distinguishable from the 
surrounding tissue is enhanced by increasing levels of denoising. Comparison between images using different levels of 
averaging demonstrates that with denoising the corpus callosum becomes more visible (Fig. 3, arrowheads). To resolve 
the fine structure of the extent of the corpus callosum, however, requires high tissue contrast with averaging. If this is 
given, denoising enhances the visualization.

Several approaches to speed up MRI acquisitions by exploiting temporal or spatiotemporal redundancy of the images 
have been introduced in the literature [Pruessmann 1999, Griswold 2002]. Techniques like parallel imaging produce 
structured noise in the reconstructed image because of the decreased data sampling and noise amplification caused by 
the parallel reconstruction algorithm [Aja-Fernández 2014]. Ex vivo brain data were acquired with either partial Fourier or 
the multi-coil generalized auto-calibrating partial parallel acquisition (GRAPPA) technique (Fig. 5). Data acquired without 
acceleration served as a reference. Acceleration translated into an up to 3-fold reduction in acquisition times compared 
to the protocol when no averaging was used.  
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A denoising of level of 70% resulted in more residual noise in data acquired with a partial Fourier 1.55 as compared to 
data acquired without acceleration. The effect was strongest in homodyne reconstructed data and lower in zerofilled 
data. Moreover, denoising of these accelerated datasets resulted in image blurring which was also strongest in 
homodyne reconstructed images and lowest in images reconstructed with zerofilling. Acquiring images with partial 
Fourier 1.2 resulted in less residual noise and normal image appearance when denoised with 70%. Denoising, however, 
was not effective when combining a partial Fourier with interpolation (1.35 in Read and Phase) with both the source and 
the denoised image having similar appearance.  

Grappa acceleration resulted in noisier images than in acquisition with partial Fourier. Reconstructing the acquired 
data with the denoising algorithm successfully removed noise from the GRAPPA image acquired with an acceleration 
factor 2. However, in the image acquired with an acceleration factor 3, the noise is not completely removed. Moreover, 
reconstruction artifacts and loss of tissue contrast unrelated to the denoising reconstruction are apparent. This shows 
that the algorithm may not be able to deal with data that has a noise characteristic that differs from the noise that the 
networks have been trained with (i.e. without acceleration and interpolation). However, the result depends on the 
chosen acquisition and reconstruction parameters.     

Taken together, denoising may improve images where SNR is reduced by applying faster imaging protocols. The overall 
decrease of acquisition time that can be achieved by adaptation of imaging protocols can significantly reduce the 
exposure time of animals in the instrument and can thus be used for the refinement of the method. In addition, it allows 
either to obtain additional read-outs during an MRI examination or to enable higher throughput for research. 

Figure 5: Denoising of accelerated brain data. Ex vivo T1-weighted FLASH data of a fixed mouse head were acquired at 9.4 Tesla. Data were either 
acquired with no acceleration, with partial Fourier (in Read), partial Fourier and interpolation (1.35 in Read and Phase), or with multi-coil parallel imaging 
technique GRAPPA. For GRAPPA, an acceleration factor (R) of 2 and 3 was chosen, respectively. Partial Fourier images were reconstructed either with 
zerofilling, homodyne, or POCS, as indicated. All images are shown with no denoising (Source) and after denoising (Denoised) with a Strong network, 
applying a pre-denoising level of 50% and denoising level of 70%.



Figure 6: Boosting resolution. Ex vivo T2-weighted TurboRARE data of a fixed mouse head acquired at A) 3 Tesla, B) 7 Tesla, and C) 9.4 Tesla. All images 
were acquired with 0.8 mm (A) and 0.7 mm (B, C) slice thickness and with a field-of-view of 20 x 20 mm2 and the given matrix size using either no 
averaging or acquiring 4 averages. Images were reconstructed with no denoising (NA1 and NA4), or after denoising (NA1 Denoised) using a network Large, 
applying a pre-denoising level of 50% and denoising level of 70%.

In Fig. 6, axial T2-weighted TurboRARE images of a fixed mouse head acquired at different field strengths are compared. 
Images were acquired with a fixed field-of-view of 20 x 20 mm2, with 0.8 mm (3 Tesla) and 0.7 mm (7 and 9.4 Tesla) thick 
slices and with varying matrix sizes to yield images with different spatial resolutions. In particular, the matrix sizes were 
increased by up to a factor of 1.8, 2.6 and 3.1 (vs a matrix size of 256 of the reference protocols) for images acquired 
at 3, 7 and 9.4 Tesla, respectively. These resolution increases result in a concomitant loss in SNR for each image. The 
loss in SNR can be compensated by using averaging and thus additional data was acquired with four averages. The 
comparison of non-denoised averaged images with single averaged images that were denoised reveals that denoising 
mitigates increased image noise at higher resolutions and produces images of similar quality to that of images acquired 
with averaging. The gains in image quality by denoising are higher with data acquired at 3 Tesla where increasing the 
resolution yields images that are more difficult to interpret compared to data acquired at 7 and 9.4 Tesla where SNR 
is inherently higher. Nevertheless, images acquired at 7 and 9.4 Tesla benefit substantially from denoising during 
reconstruction, as the intrinsic higher SNR of these images can be invested into selecting smaller voxel dimensions. 
Thus, taken together denoising enables to choose higher resolutions within a given unit time as it reduces the need for 
averaging. This can also be practical in cases where averaging may either not be desirable or practical. 

Boosting the Resolution of Images per Unit Time

High-resolution MRI provides detailed structures in tissue and organs and can help to detect abnormalities like lesions 
or tumors. High-resolution structural MRI scans require long image acquisition times to overcome the inherit low SNR. 
Here we demonstrate how the use of Smart Noise Reduction can be used to shorten these acquisition times while 
maintaining the necessary image quality. 



Conclusion

Smart Noise Reduction allows to efficiently remove noise from structural images and thus to improve image quality of 
acquired data. With denoising levels and network choices, the user has options to optimize denoising results to their 
applications and needs. Noisy images are improved in cases where SNR is limited e.g. images obtained at low field 
strengths, when optimal coils are not available, or when averaging is not practicable or desired. In cases where SNR is 
sufficient, denoising can be used to boost resolution per unit time or chosen to make acquisitions faster.

Abbreviations

CNR = contrast-to-noise ratio; FISP = fast imaging with steady state precession; FLASH = fast low angle shot;  
GRAPPA = generalized autocalibrating partial parallel acquisition; MRI = magnetic resonance imaging; NA = number of 
averages; PSNR = peak signal to noise ratio; RARE = rapid acquisition with relaxation enhancement; SNR = signal-to-
noise ratio; SSIM = structural similarity; SWI = susceptibility weighted imaging 
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Figure 2 The power of NMR in narcotics analysis
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