Application of TIMScore to De Novo Search Engine, DeepNovo in PaSER Robin Park¹; Patrick Garrett²; Wojciech Marszałek¹; Tharan Srikumar¹; Sven Brehmer¹; Titus Jung²; Marc-Antoine Beauvais¹; Hyunsoo Kim²; Chistopher Adams¹; Dennis Trede¹; John R. Yates, III²; Rohan Thakur¹

1Bruker Daltonik GmbH; 2Scripps Research, La Jolla, CA

Introduction

We have recently integrated a de novo peptide sequencing tool, DeepNovo, into PaSER (Parallel Search Engine in Real-time) to sequence peptides in real-time by using deep learning and dynamic programming. To address the de novo peptide candidate ambiguity problem for a given spectrum, we have extended previously developed CCSaware search scoring function, TIMScore, to de novo search results. Methods

We developed a CCS prediction module and integrated it into the PaSER platform to dynamically generate predicted ion mobility values on the fly for de novo search. Similar to how TIMScore has been used for the database search, the search engine feeds the top five peptide candidates for each spectrum to the CCS prediction model to generate ion mobility values. Then, PaSER calculates TIMScore for each candidate. The program evaluates the ambiguity of the peptide candidates and applies TIMScore to attempt to clarify true peptide candidates.

PaSER Data Analysis Platform Overview

DeepNovo Sequencing Results

) min			
enNov	o Sequencina		
°	Total PSMs	Ambiguous Spectra	Percent

CCA-Aware De Novo Sequencing Strategy

Apply TIMScore to De Novo Sequencing Ambiguity Problem

