

Variable Temperature Experiments in Solid-State NMR

木村英昭 (ブルカー・バイオスピン株式会社 アプリケーション部) 畑中稔 (ブルカー・バイオスピン株式会社 アプリケーション部) March 5&6, 2015

内容

1. 温度可変測定でどんなことがわかる?

2. プローブと試料管で決まる温度可変範囲 / 木村

3. 温度可変に必要なハードウェアについて

4. 実際に温度可変測定をしてみよう! 畑中

5. 温度補正の必要性

木村

1. 温度可変測定でどんなことがわかる? ①高分子材料の解析

温度上昇による結晶/非晶 割合変化の解析

分子内の局所的な運動の解析

ポリエチレンの¹³C CP-MASスペクトルの温度依存性 I. Ando *et al.* Solid State Commun., 62, 785 (1987). 硬化したエポキシ樹脂の ¹³C CP-MASスペクトルの温度依存性 A.N. Garroway *et al*. Macromolecules, 15, 1053 (1982).

1. 温度可変測定でどんなことがわかる? ②Static測定による解析

BRUKER

1. 温度可変測定でどんなことがわかる? ③無機材料の解析

(AgI)_x (Ag₂O)_y (P₂O₅)_{1-x-y} 系ガラスの解析

(AgI)_x (Ag₂O)_y (P₂O₅)_{1-x-y} 系ガラスの¹⁰⁹Ag Static NMRスペクトル及び温度と化学シフトとの関係 K.K. Olsen, J.W. Zwanzinger, Solid State Nucl. Mag. Reson. 5, 123 (1995).

2. プローブと試料管で決まる温度範囲 プローブごとの温度可変範囲

プローブの種類によって可能な温度範囲が決まります。

•Laser 7(WB)プローブ (7mm) R.T.~700°C

- ▪WVT(WB)プローブ(7,4mm) -120~300(400)°(
- ・DVT(WB)プローブ(7, 4, 3.2 mm) -130~150°C
- ・DVT(WB)プローブ(2.5*,* 1.9mm) -50~80°C
- •VTN, DVT(SB)プローブ(7~1.9mm) -50~80°C

(Wide Bore) (Standard Bore)

•DVT(WB, SB)プローブ(1.3mm) -30~70°C

2. プローブと試料管で決まる温度範囲 VTN, DVT, WVTプローブの構造の違いについて

プローブ	VTN (SB)	WVT (WB)	DVT (SB, WB)
VT (Variable Temp.)ガス	bearing	bearing	separated
ステーター材	BN	MgO	BN
温度センサー	1	2	1
VTN/WVT	Bearing in	DVT Bearing in	Drivein
TC2	All and some	RO TRANS	Prive in Drive in
TC1	Driv	ein TC1	いガスカ

ステ・

ステー

2. プローブと試料管で決まる温度範囲 キャップ(羽)で温度範囲とMAS回転数が限定される

材料	ジルコニア	Macor	窒化ホウ素 (BN)	Kel-F	Vespel
構成元素	Zr, O	Si,Mg,Al,B,F,O 	B <i>,</i> N	C, F	C,H,O,N
MAS Speed (4mm)	∼ 15 kHz	∼ 10 kHz	∼ 10 kHz	∼ 15 kHz	∼ 15 kHz
MAS Speed (7mm)	∼ 7 kHz	∼ 5 kHz	∼ 5 kHz	∼ 7 kHz	∼ 7 kHz
温度範囲(℃)	-150~650	-150~250	-150 ~ 150	-20~70	-30~70
		1	/	/	

3. 温度可変に必要なハードウェアについて N₂ガス発生装置と冷却器

KER

3. 温度可変に必要なハードウェアについて 窒素 (N₂) ガスの使用

温度範囲が、0~70°Cの範囲なら空気(air)を流せば良いですが、 0°C以下、70°C以上の温度では、窒素(N₂)ガスを流す必要があります。 通常、窒素ガスは、液体窒素ELF(Evaporator Liquid Flask)容器と気化器を 用意し、液体窒素を気化させることでN₂ガスを供給します。

N,ガス発生装置

3. 温度可変に必要なハードウェアについて 冷却装置(Chiller)について

室温より低い温度にするには、冷却装置でVT Gasを冷却する必要があります。 冷却装置には、以下のようなものがあります。

SmartCooler BCU I -40/50

・VTガスを-40℃まで冷却できます。(50NL/min) ⇒サンプル温度は0℃付近まで

SmartCooler BCU II -80/60

・VTガスを-80℃まで冷却できます。(60NL/min) ⇒サンプル温度は-40℃付近まで

LN₂ heat exchanger

 ・VTガスを液体窒素(77K)に浸したheat exchangerを 通すことで冷却します。
 ⇒サンプル温度は-150℃まで

4. 実際に温度可変測定をしてみよう!

温度可変時の注意事項

・シムコイルをCoolingさせましょう!

・低温および高温測定では、シムコイルの温度を許容範囲内に保つ必要があります (0~80°C)

・プローブへの配線・配管は正確に!

・プローブへの配線・配管が正確でなければ温度制御できません。

・測定温度域に対応したドライブキャップを使用

・-20℃以下、70℃以上ではKel-Fキャップは使用しない。

温度は慎重に徐々に変える

・ローターは高速で回転しています。温度を急激に変えることは、回転の
 バランスを崩し、サンプルローターにダメージを与えることを認識してください。

不安がある場合は、講習を依頼してください!

4. 実際に温度可変測定をしてみよう!

設定温度別 必要なハードウェア

設定温度	キャップ	プローブ Frame Cooling	N₂ガス	冷却器	シムコイル Cooling	プローブ
80°C以上	BN or ジルコニア	必要	必要 古 :	不要 ⊟	必要	WVT (WB, 7, 4ф)~300°C DVT (WB, 3.2q以上)~150°C
70 ~ 80°C	Kel-F	必要		下要	必要	All Solid probes except for 1.3¢
室温~70℃	Kel-F	必要		不要	不要	All Solid Probes
0℃~室温	Kel-F	必要	━ /Ⅲ ┃ 不要	必要	不要	All Solid Probes
-20∼0°C	Kel-F	必要	必要	必要	必要	All Solid Probes
-20°C以下	BN or ジルコニア	必要	飞 ;	■必要 ■■	必要	1.3 ф ~-30°C All SB Solid Probes ~-50°C DVT (WB, 2.5, 1.9 ф) ~-50°C WVT (WB, 7, 4 ф) ~-120°C DVT (WB, 3.2 ф以上) ~-130°C

4. 実際に温度可変測定をしてみょう! (1) 室温付近: 60°Cに設定 -ガス配管-

4. 実際に温度可変測定をしてみよう! (1)

設定温度	キャップ	プローブ Frame Cooling	N ₂ ガス	冷却器	シムコイル Cooling	プローブ
室温~70℃	Kel-F	必要	不要	不要	不要	All Solid Probes

- 1. 室温でMASをしている状態にする
- 2. プローブのFrame CoolingをOPENにする
- 3. EDTEインターフェイスを表示させ、

Target Temperatureに60℃を設定し、VTU StateをOnにする ⇒数分で60℃に!

プローブのFrame Cooling

手順

1. MAS IIユニットのタッチパネルからUnit Setupをタッチ

2. 次の画面でValve Setupをタッチ

BRUKER

プローブへのFrame Cooling配管

3. "Frame CI"をOpenに!

"Down"で→の位置をFrame Cl.へ "Change"で✔の位置をCからOへ

- •TopSpinのコマンドラインから"edte"+ENTERで下記画面が現れます。
- ・EDTEインターフェイスで温度コントロールをします。
- •"configuration"をクリックし、下記設定をご確認ください。

Temperature unit: V	TU related settings	(e.g. temperature unit.	Set manning be	A THE REAL PROPERTY OF A	and a second	and the second	
Celsius [°C] Cahrenheit [°F] Cower unit: Watt [W] Percent [%] Location: External TopSpin window Internal TopSpin window	VTU related settings (e.g. temperature unit, names, limits etc.) can be stored in a profile. You can load a profile to apply the stored VTU settings to different hardware configurations or users. Create new profile Create Load profile Load Delete profile Delete		Set mapping between te-parameters (e.g. te2) or te-commands (e.g. te2set, te2get) and hardware channels. This determines which channel is used. Hardware channel Logical channel 1 1 2 2 2 • Set 3 3 • 4			Use "External" for MAS probes with tempered bearing gas. (Note: VTU gas supply is switched off) Gas flow control: Standard → DVT External → VTN, WVT 	
Channel configuration							
Channel	Re	gulation Mode Tempe	erature Limits (min	nmax) He	ater Safety Temper	ature Maximum F	ower

4. 実際に温度可変測定をしてみよう! (1)

EDTE インターフェイスの操作 (60°Cに設定)

Temperatureをクリック
 Target Temperatureに60°Cと設定
 VTU StateをOnにする

4. 実際に温度可変測定をしてみよう! (2)

高温: 100°Cに設定 -ガス配管-

4. 実際に温度可変測定をしてみよう! (2)

高温:100°Cに設定 -操作手順-

設定温度	キャップ	プローブ Frame Cooling	N ₂ ガス	冷却器	シムコイル Cooling	プローブ
80°C以上	BN or ジルコニア	必要	必要	不要	必要	WVT (WB, 7, 4ф)~300°C DVT (WB, 3.2¢以上)~150°C

- 1. ガスの供給をコンプレッサーから N_2 ガス発生装置に切り替える。 N_2 ガスを発生させてからMASをする。
- 2. プローブのFrame Cooling
- 3. シムコイルのCooling
- 4. EDTEインターフェイスで100℃ を設定し、VTU StateをOnにする

4. 実際に温度可変測定をしてみよう! (2)

窒素 (N₂) ガスの使用(ELF管と気化器の接続)

1. ELF管(液体N2容器)の全てのバルブが閉じるていることを確認

2. 気化器の全てのバルブが閉じていることを確認

- 3. ELF管と気化器を金属製のホースで接続する
- 4. 気化器からのホースを三方コックに接続する

4. 実際に温度可変測定をしてみよう! (2) 窒素 (N₂) ガスの使用 (N₂ガス発生手順)

① ELF管の保圧弁を開けて 圧力ゲージを0.8 MPaにする
 ② ELF管の液体取出弁をあける
 ③気化器のバルブをELF管側から順に(A→B)開ける
 ④気化器のCを開け(きつくなる方向)、圧力を0.6MPaにする
 ⑤気化器のDのレバーを90°回しN₂ガスを流す
 ⑥ 三方コックをコンプレッサーからN₂ガスに切り替える
 取り外し手順
 1. 全てのバルブを閉じる

- 2. ELF管と気化器をつなぐ金属ホースを外す
- 3. 三方コックをN₂ガスからコンプレッサーに戻す

ELF未使用時の注意事項

液体N₂が残ったままELF管を放置すると内圧が上がります。 放出弁を開けて、内圧を下げてください

4. 実際に温度可変測定をしてみよう! (2) シムコイルのCooling 1

シムコイルのクーリングの マグネットへの配管

手順1

- ・コマンドラインから"ha"+ENTER
- ・下図が開いたら、"BSMS"のOPENをクリック

🖕 Hardware ethernet addresses	TALS	×
The hardware devices listed l and configured with a "WEB-I	below can be accessed Browser".	
Press the "Open" button for a connection to this device. Press the "Refetch addresses addresses from DHCP server	a browser with a s" button to reload	
Main Controller		
IPSO	149.236.99.251	Open
Digital Receiver Unit		
DRU1	149.236.99.89	Open
Amplifier		
BLA_W1345530_0115	149.236.99.254	Open
BLA_W1345530_0113	149.236.99.253	Open
BLA_W1345529_0079	149.236.99.252	Open
Lock/Shim		
BSMS Z100818/4033	149.236.99.20	Open
Refetc	h addresses Print	Close

4. 実際に温度可変測定をしてみよう! (2)

シムコイルのCooling 2

手順2

・BSMS Service Webが開いたら"Variable temperature"をクリック 下図

・"VT Control", "Auxiliary Gas Flow"の順にクリック

手順3

ゥ 下図が開いたら、

- ・"Shim Gasflow Mode"から"auto"を選択
- ・ <u>"Set</u>"をクリック

4. 実際に温度可変測定をしてみよう! (2)

100°Cに設定

Temperature"をクリック Target Temperatureに100°Cと設定 VTU StateをOnにする

設定温度が室温からやや離れる場合は1000~1200lph程度に

4. 実際に温度可変測定をしてみよう! (3)

低温: -40°Cに設定 -ガス配管-

RUKER

4. 実際に温度可変測定をしてみよう! (3)

低温: -40°Cに設定 -操作手順-

設定温度	キャップ	プローブ Frame Cooling	N₂ガス	冷却器	シムコイル Cooling	プローブ
-10℃以下	BN or ジルコニア	必要	必要	必要	必要	All SB Solid Probes~-50°C DVT (WB, 2.5, 1.9ф)~-50°C WVT (WB, 7, 4ф)~-120°C DVT (WB, 3.2q以上)~-130°C

- 1. ガスの供給をコンプレッサーからN2ガス発生装置に切り替える。
- 2. プローブのFrame Cooling, シムコイルのCoolingをする
- 3. VTガスが冷却器を経由するように接続 (BCUご使用の場合、不要)
- 4. MASを行い、-40°Cを設定し、VTU StateをOnにする

4. 実際に温度可変測定をしてみよう!(3) **冷却器(Heat Exchanger)との接続**

手順1

プローブに接続してあるVTガスラインを外す

手順2

液体窒素を充填したデュアーに

LN₂ heat exchangerを浸し

VTガスラインをheat exchangerに接続する

冷却器(Heat Exchanger)との接続

手順3

heat exchangerからのホースをプローブに接続

注意事項

接続部のクランプを強く締めすぎるとプローブ側の ガラスボールジョイントが割れる恐れがあります 5. 温度補正の必要性 プローブ内のVT Gasの流れ&温度検出

・サンプルの温度を直接検出することは、 現在の固体NMRでは不可能です。

 ・現実的にはローター付近の温度を 熱電対を検出器に観測しています。

上記の理由から
 EDTEインターフェイスでのNMR表示温度と
 実際のサンプルの温度には「ずれ」が生じます。

5. 温度補正の必要性 MAS回転によるサンプルの温度上昇

•MAS下では、サンプル温度が上昇します。

・4mm径の場合、5 kHz MASで3℃、10kHzで9℃、15kHzでは34℃も上昇します。

			15-
ローター径 (mm)	MAS speed (kHz)	温度上昇 (°C)	1.3mm probe
2.5	35	47	10- 10-
4.0	15	34	5
			0 5 10 15 20 25 30 35 40 v _H (kHz)
			回転数と温度上昇の関係

BRUKER German Users Meeting2014

ローター内の場所によっても温度が違うことが知られています。
 サンプルは、ローターの中心にだけに詰めた方が
 より均一な温度での測定を実現できます。

5. 温度補正の必要性 CPやデカップリングによる温度上昇

・CPやデカップリングによって サンプルの温度が上昇することがあります。

・特に水などの溶媒を含んだサンプルは 上昇しやすい傾向にあります。(右図)

サンプルの温度上昇は、デカップリング強度、
 プローブの構造等も影響します。

E-freeプローブは、CPやデカップリングによる 温度上昇が起こりにくい構造になっています。

Pb(NO₃)₂を水和させ、207Pb DD-MAS で測え BRUKER German Users Meeting2014

5. 温度補正の必要性 サンプルの温度補正

A. Bielecki et al. JMR 116(A), 215 (1995)

・Pb(NO₃)₂は、温度と共に化学シフトが変わる化学シフト温度計です。(左下図)

・1°C上昇につき0.753ppm変化するというデータがあります。(右下図)

・NMR表示温度と実際のサンプル温度を補正する「温度補正グラフ」があると便利です ・温度補正グラフは、MASの回転数ごとに作成する必要があります

・温度補正グラフの作成手順

- 1. 温度: 室温, MAS: 2 kHzでPb(NO₃)₂の²⁰⁷Pb NMRを測定
 ⇒表示温度とサンプルの実際の温度が一致している基準とする
- 2.温度: 室温, MAS: 実際の速度で、²⁰⁷Pb 化学シフトを観測 ⇒化学シフトのずれから、MAS回転による温度上昇を算出

3. 温度を変えて、²⁰⁷Pb 化学シフトを観測 ⇒表示温度 vs ²⁰⁷Pb化学シフトから算出した温度(実際のサンプル温度)グラフ作成

温度補正グラフの例

Would you like to learn more? Contact a customer service representative.

Innovation with Integrity