Food Screener[™]: Innovative NMR-tools for Food Quality and Safety Screening **食品质量和安全性筛选的NMR创新解决方案**

Bruker China Xu Wenxin(**徐雯欣**), Ph.D NMR Application Specialist

BRÚKÉR

Would you like to learn more ? Contact a customer service representative to discuss about Wine Profiler, Honey Profiler, Juice Profiler.

- What can Nuclear Magnetic Resonance (NMR) accomplish in food analysis?
 NMR为什么可以运用于食品筛选?
- NMR-based screening features 基于NMR的食品筛选具有什么特征?
- What information can we obtain from Food screener?
 Food Screener可以为用户提供什么信息?

- Sample Materials: Liquid, Solid & Semi-Solid samples
- Unbiased detection
- Integral area of singal is proportional to its molar concentration (except active 1H)
- The combination of hundreds of detective molecules, with thousands of signals shows a highly specific `fingerprint'-- Phenotype.
- This `fingerprint' is a clear multidimensional marker, which is able to make conclusions about origin, quality, classification, concentration, and so on.

1D <u>1H</u> spectra

- Organic compound
- 1H sensitivity

What can NMR accomplish in Food Analysis?

- All conventional food tests are targeted. What is not directly checked for, will most often be overlooked!
- Unbiased detection for ALL proton atoms in sample (Holistic)
- Nontargeted Screening enables the detection and analysis of unexpected and unknown parameters, that targeted analysis methods can not detect.

Targeted- / Nontargeted- screening within a set of experiments! (~15min)

Deconvolution and LC-SPE-NMR Targeted! Metabolic profiling Identification / quantification

NMR-based Screening Features

FoodScreener: 400MHz Standard Platform for multiple Bruker Solutions

Juice Screener[™] / SGF-Profiling[™]

SGF: SURE-GLOBAL-FAIR

- Non-profit organization dedicated to Juice Safty & Quality Control
- Supported and financed by over 650 members from nearly 60 countries
- Inspectors all over the world taking samples on site
- No analysis in house
- Suspicious samples are sent to external laboratories

Fruit Juice Analysis

- Minimal sample preparation
- Only one measurement (~ 15 minutes)
- Targeted analysis (Quantification of >30 compounds)
- Non-Targeted analysis, up to 10 results (Classification and Verification)
 - Origin, Product Type, Untargeted Analysis, Fruit content, Mixture Dectection ...
- Database of more than 16000 juices (Version 3.0)
- PDF report of all results

German Industry Award 2008 Category: Automation

Greentech Asia Shanghai 2010: Award for most innovative Food Analysis System

Minimal Sample Preparation

- Clear juice (e.g. apple juice):
 - Addition of 10 % buffer
 (KH₂PO₄, D₂O, NaN₃, TSP)
- Cloudy sample (e.g. orange juice)
 - Centrifugation 10 minutes(6000 rpm)
 - Addition of 10 % buffer

Procedure for secure data transfer Food Screener

<u>Dynamic range</u>: **1:20,000** (lowest concentration to highest concentration) With a throughput of 4 samples/hour Very high reproducibility (spectrometer comprehensive)

Comparison 1D-NOESY and 2D-JRES (for safe identification)

Flowchart of decision making during post processing using cascading models in NMR based juice analysis

Report Example - Classifications

Apple juice(re-flavoured concentrate) from market in China.

Type of Fruit "Apple" was assigned.

Orange/Mandarin/Blood-Orange, Apple, Grape, Grapefruit, Pineapple, Lemon, Peach, Raspberry, Strawberry, Black Currant, Sour Cherry, Pear, Pomegranate, Passion Fruit, Banana, Apricot, Mango, Guava

Version 3.0

Report Example - Verification Models

Apple juice(re-flavoured concentrate) from market in China.

- Applied Model: Apple from P.R. of China
- Univariate Verification:
 - Result: No deviation was detected in univariate verication (In-Model).
- Multivariate Verification
 - Result: No deviation was detected in multivariate verication (In-Model).
- Fruit Content
 - Applied Model: Apple

Origin of Fruit	Consistent with 100%
P.R.of China	Yes

Report Example - Verification Models

Grape juice(re-flavoured concentrate) from market in China.

- Applied Model: Grape
- Univariate Verification:
 - Result: Deviating signals were found at following chemical shifts:
 - 1.393up 1.410up 5.391up 5.396up 5.402up
 3.218low 3.242low 3.371low 3.383low 3.395low
 3.406low 3.418low 3.442low 3.465low 3.512low
 3.524low 3.694low 3.712low 3.729low
- Multivariate Verification
 - Result: Sample was classified as Off-Model in multivariate verification.

Report Example - Targeted Analysis (Quantification)

─ A.I.J.N.: 欧盟果蔬汁协会公布的相应化合物浓度参考范围

				A.I.	J.N. (A	pple)	SGF-Profiling Database		
Compound	Value	Unit	LOQ	Flag	min	max	n = 1413		
ethanol	138	mg/L	10	•	1-2	3000	<10 263		
lactic acid	63	mg/L	10	0	1.4	500	<10 10 310		
5-hydroxymethylfurfural	<5	mg/L	5	0	1.4	20	<5		
Titr. Acidity pH 7*	51	meq/l		0	-04		21 74		
Titr. Acidity pH 8.1*	51	meq/l	-	0	35	117	22 76		
Titr. Acidity (pH 7, tartaric acid)*	3.7	g/l	-	0	÷-		1.5 5.6		
Titr. Acidity (pH 7, malic acid)*	3.2	g/l	- E	0	1.4	-	1.4 5.0		
Titr. Acidity (pH 8.1, citric acid)*	3.2	g/l	-	0	2.2	7.5	1.4 _ 4.5		
citric acid	<0.5	g/L	0.5	0	-	0.1	<0.5 g/L in misrence set		
malic acid	4.4	g/L	0.5	•	3.0		2.4 6.6		
fumaric acid	<5	mg/L	5	•	- N	5	<5 mg/L in reference set		
potassium*	1147	mg/l	-	۲	900	1500	969 1218		
magnesium*	47	mg/l	-	•	40	75	30 53		
glucose	30.1	g/L	0.5	•	15.0	35.0	22.3 34.9		
fructose	61.5	g/L	0.5	•	45.0	85.0	49.1 68.8		
glucose/fructose ratio**	0.49	1.105	-	0	0.30	0.5(0.38 0.62		
sucrose	13.8	g/L	0.2	•	5.0	30.(6.8 22.1		
% sucrose**	13	%	1	0	-	12	7 22		
total sugar**	105.4	g/L	2.0	0	-		88.5 119.2		
alanine	35	mg/L	5	0	1	5(8 41		
proline	<50	mg/L	50	0	-		<50 mg/L in reference set		
arbutin	<10	mg/L	10	0	1	1.2	<10 mg/L in reference set		
benzaldehyde	<5	mg/L	5	0	1	1.11	<5 mg/L in reference set		
benzoic acid	<10	mg/L	10	0	1.5		<10 mg/L in reference set		
chiorogenic acid	<20	mg/L	20	0	7		<20 185		
citramalic acid	40	mg/L	10	0	1		<10 R6		
formic acid	<5	mg/L	5	0	1	1	<5 13		
galacturonic acid	182	mg/L	100	0	1		<100		
malic/quinic ratio**	11.3		-	0	-	Ĩ	4.3 30.6		
methanol	21	mg/L	10	0	-	1	<10 43		
pyruvic acid	<10	mg/L	10	0			<10 10		
quinic acid	391	mg/L	50	0	1		201 893		
sorbic acid	<10	mg/L	10	0	-	-	<10 mg/L in reference set		
succinic acid	24	mg/L	10	0	-	-	<10 47		
xylose	341	mg/L	300	()	-		<300 721		

与NMR模型中相应化合物浓度分布进行比较

Distribution curves get better representative with every sample measured

Quality validation of Bruker NMR-based food screening B 基于NMR的食品筛选结果的验证—确定分析结果的可靠性

For Food screening the following validation methods are continuously applied:

- Proof of highest-level reproducibility
- Proof of inter-instrumental identity of results
- Comparison with official reference methods (e.g. IFU)
- Participation in Proficiency Tests by FAPAS[®]

These tests prove the high precision and high accuracy of Bruker SGF/Wine-Profiling[™]

Highest Level of Reproducibility 最高水平的重现性

One main advantage of our NMR-based screening systems is the highest level of reproducibility of the complete 1H-NMR fingerprint, and therefore of all the extracted results - quantification as well as results from statistical models.

Inter-Instrumental Comparison at 400 MHz BRUKER 不同的2台400MHz的定量结果比较

The same sample measured on two equivalent machines (same fieldstrength, same hardware) generates the same fingerprint and therefore equivalent quantification and statistical results.

This is a fundamental requirement to develop a reliable analysis across the border of one laboratory.

Comparison with Official Reference Methods BRUKER 与官方参考方法的结果比较

Very good correlations with reference methods More than 3500 comparisons of 20 different types of fruit

High accuracy is proven

Validation of NMR results Against IFU standard methods

FAPAS[®]: Food Analysis Performance Assessment Scheme FAPAS[®]:食品分析能力评估测试

• Inter-labor comparison

Constant testing of analysis quality by participation in official and certified ring tests, is of high priority for Bruker BioSpin NMR-based juice and beverage screening.

UK government organisation

FAPAS[®] is part of The Food and Environment Research Agency, an executive agency of the UK Government Department for Environment, Food and Rural Affairs (Defra). The extensive knowledge and excellent facilities at Fera have enabled us to become world leaders in our field. Our proficiency tests are open to both government and non-government laboratories.

fepas lines for Proficiency Testing. food microbiology scheme ittee of internationally ce on content and answer gemma gmo analysis leap water proficiency testing by the United Kingdom phytopas ures are detailed in the plant health diagnostics latest news s format: we do not disclose rmission. Analysis (RAFA 2009) knowledgeable agents across of contact who will take UK government organisation FAPAS[®] is part of The Food and Environment Research Agency, an

laboratories.

executive agency of the UK Government Department for Environment, Food and Rural Affairs (Defra). The extensive knowledge and excellent facilities at Fera have enabled us to become world leaders in our field. Our proficiency tests are open to both government and non-government

FAPAS have been at the forefront of international proficiency testing services since 1990. 21/07/2009 - The 4th International Symposium on Recent Advances in Food RAFA 2009 will take place in the Diplomat Hotel Conference Centre, Prague, Czech Republic, 4-6 November 2009. Emphasis will be on advanced analytical & bioanalytical technologies and food analysis applications related to the following areas: - Residues and contaminants, - Authenticity, traceability, fraud, - Flavours and odours, - Processing and packaging contaminants, - Mycotoxins, marine and plant toxins, - Allergens, -Genetically modified organisms (GMO's), Nanoparticles, - Novel foods, nutritional supplements, organic food, - QA/QC and chemometrics in food analysis. The programme will include expert presentations followed by stimulating discussions. A stateof-the-art exhibition and enjoyable social programme will be organised for conference participants. Further information is available at the conference website http://www.rafa2009.eu

FAPAS® Results of the JuiceScreener

Some other Examples on FAPAS® Results

Material	Compound	Unit Min-Conf	Max-Conf	Z-Score Chart	NMR-Value
Apple Juice	Potassium	mg/L 930.0	1166.0	-0.4	1024.0
Apple Juice	Magnesium	mg/L 39.9	57.3	1.0	53.0
Apple Juice	Total Sugars	g/100mL 9.1	11.4	-0.1	10.2
Apple Juice	Total Acidity	g/100g 0.4	0.5	-0.7	0.4
Tonic Water	quinine	mg/L 59.5	83.6	0.1	72.0
Tonic Water	Benzoic Acid	mg/L 102.0	139.0	-1.0	111.0
Tonic Water	aspartame	mg/L 86.0	119.0	0.1	103.0
Tonic Water	acesulfame-K	mg/L 84.0	117.0	-0.6	96.0
Soft Drink	Saccharin	mg/L 12.8	19.6	-1.3	14.0
Soft Drink	Cyclamate	mg/L 165.0	221.0	1.4	213.0
Soft Drink	Citric Acid	mg/L 2826.0	3422.0	-0.2	3100.0
Cola Soft Drink	Benzoic Acid	mg/L 122.0	165.0	0.0	144.0
Cola Soft Drink	Caffeine	mg/L 89.0	122.0	0.7	111.0
Orange Juice	Potassium	mg/L 1576.0	1942.0	1.2	1870.0
Orange Juice	Total Sugars	g/100mL 8.1	9.1	-0.2	8.6
Apple Juice	Potassium	mg/L 912.0	1143.0	0.9	1082.0
Apple Juice	Magnesium	mg/L 38.7	55.6	0.4	49.0
Orange Juice	Total Sugar	g/100mL 8.2	9.2	1.2	9.0
Orange Juice	Sucrose	g/100mL 2.9	3.3	1.2	3.2
Orange Juice	Glucose	g/100mL 2.5	2.9	16	2.8
Orange Juice	Fructose	g/100mL 2.7	3.1	0.9	3.0

Z-Scores in the range of -2 and 2 cover the range of minimum and maximum confidence (green region).

Correspog Z-Score of SGF-Profiling

Regression Results (based in Proton-Spectrum)

Reconstitution of gaussian distribution for secure outlier determination

高斯分布的重建——确保多变量统计分析结果

no solutions offered in commercial programs!

Multivariate distributions are not Gaussian!!

hippuri acid 🧿 🦲 1-methylnicotinamide fumaric acid 3-amino-isobutyric acid acetic acid pseudouridine α-D-Galactose α-D-Lactose ТМА DMA betaine citric acid lactic acid alanine succinic acid formic acid creatine creatinine

Conversion part of PHD B.Schütz

Fruit Content in Red Fruits

- Case Study: Raspberry Puree

ppm 🗸

Conventional parameter (Calculated at Brix 8.5°)

2161

Potassium Phosphate Magnesium Isocitric acid Formol number

Citric/isocitric ratio Glucose/Fructose ratio 18.9 ml/100ml √ 151 √ 0.82 √

636 ppm

135 ppm

106 ppm

Fruit Content Estimation

105 % 🗸

Fruit Content in Red Fruit Juice

¹H-Chemical Shift - 7% of NMR-Profile

- Spectrums are normed on the total sugars
- Substrate reflects the fruit content
- Black sample doesn't seem to have a 100% fruit content

Wine Analysis and Requests

Wine by NMR:

- Replaces conventional, targeted wine analysis
 - Quantification of 56 parameters
- Determination of grape variety (22 types)
- Mix of grape varieties, 15% foreign grape variety allowed (Europe)
- Country classification (Red wine)
- Selected region classification for the major European wine-producing countries (Red wine)
- Verification of Vintage (White wine)
- Indication for addition of water
- Detects irregularities of any kind (untargeted analysis)
- SOP`s for preparation, measurement and Quantification established
- Statistical models established

Very Simple Preparation - can be done by robotic system

Total sample volume typically 600µL in 5mm diameter tubes

pH-Effect on NMR signal positions of Wine

Preparation Tool for Wine Analysis

Special

pH Electrode

<u>Automatic pH-adjustment unit</u> for small volumes ~1ml (Bruker patent)

pH Titration Unit with high precision pumps, syringes with minimized void volume, vial shaker and touch panel for control

Wine-Screener™

Solvent suppression —— Important for NMR based quantification in mixtures and to detect low concentrated compounds

1H-NMR spectrum of wine (with suppression) Currently ~60 compounds quantified

Additional compounds: HMF, trigonelline, sucrose, fructose, citric acid, fumaric acid, proline, ...

Reproducibility in Wine NMR

Statistical Modelling with authentic wine

modelling, deal with

parameters

 In cooperation with several wine laboratories more than 13,000 wine samples have been collected and measured at 400 MHz

In

we

orthogonal

considerably

statistical

have to

that influence the spectra

- NMR, once trained, can predict parameters, that are not related to a special molecule
- NMR can deliver statistical results beyond quantification.

Vinification versus Micro-Vinification

Cooperation with Prof. Dr. Fischer, DLR Rheinland-Pfalz and CVUA

Consequences: We have removed all spectra from microvinification in the authentic database

Validation Quantification NMR定量结果的验证

The Quantification methods are validated and optimized by Spiking-Studies and by

comparison with conventional analyses

Validation by manual Spiking-studies according to DIN 32645 (LOD/LOQ)

pH and total acids via Regression NMR回归分析的结果验证

pH value

Total acid

Classification of Grape Varieties 葡萄品种分类结果的验证

Vintages of German Wine (DLR) 德国葡萄酒年份分类的验证

Cooperation with Dienstleistungszentrum Ländlicher Raum Rheinland-Pfalz

All the samples kindly from DLR Rheinland-Pfalz, Riesling excluded

Results by NMR indicating problems confirmed by conventional AnthocyanAnalysis

Anthrop-R: WE-DOB-H1 (1994)

Analysis Report

Wine-Profiling[™]

Sample ID: 6136723

Additional Sample Information

Variety: Portugieser Blau Country: Austria Region: undefined Vintage: 2011 Type of Wine: red

Classification Analysis

Model: Red Wine Variety (Germany/Austria)

Result: Declared variety Portugieser Blau is not consistent with classification result.

caftaric acid	73	mg/L	15	0	-	8	<15	106
epicatechin	57	mg/L	30	0	-	2	<30	58
gallic acid	56	mg/L	25	0	-	-	<25	32
shikimic acid	59	mg/L	20	0	-	÷.	<20	67
trigonelline	14	mg/L	10	0	-	-16	<10	15

Stabilising Agents:

100 million (100 million)	- 11	1940			Official Ref.		Wine-Profiling [™]
Compound	Value	Unit	LOD	Flag	min	max	NMR reference database
benzoic acid	<10	mg/L	10	0		LOD	not available
sorbic acid	<10	mg/L	10	0	-	200	not available
salicylic acid	<20	mg/L	20	0		LOD	not available

Untersuchungsbericht 6136723 - 2

Freigabe von: Herbert Witowski, Laborleitung am 07.05.13

Bezeichnung der Probe Untersuchungszeitraum vom 18.03.13 Behälterart: 0,75L Glasflasche Untersuchungszeitraum vom 18.03.13 bis 07.05.13

WeinNr:F13 3966 LN 672/12 13,5 %vol

Weinviertel Blauer Portugieser Blauer Portugieser N 100;00% Qualitätswein rot Stillwein Stahltank trocken 3966

Anthocyanspektrum HPLC (QMP 11)		
Parameter	Ergebnis	Einheit
Dp-3-Glucosid	7.73	%
Cy-3-Glucosid	n.n.	%
Pt-3-Glucosid	9.93	%
Po-3-Glucosid	5.25	%
Mv-3-Glucosid	73.14	%
Po-3-acyl	n.n.	%
Mv-3-acyl	n.n.	%
Po-3-cugl	0.39	%
Mv-3-cugl	3.57	%
Mv-3.5-Diglucosid	< 1.0	mg/l
Summe nicht acylierter Anthocyane	96.05	%
Summe acylierter Anthocyane	3.95	%
Summe acetylierter Anthocyane	0.00	%
Summe cumarylierter Anthocyane	3.95	%
Verhältnis acetylierter : cumarylierter Anthocyane	0.00	

Untersuchungsergebnis

Parameter	Ergebnis	Einheit	Methode	
Gesamtalkohol	110.0	g/l	1.1	
Gesamtalkohol	13.93	%vol	1.1	
Vorhandener Alkohol	107.3	g/l	2.9 NIR**/*	
Vorhandener Alkohol	13.59	%vol	ber.	
Gesamtextrakt	32.9	g/l	3.3	
Zuckerfreier Extrakt	27.2	g/l	3.3	
Glucose	0.7	g/l	4.5**	BG: 0,1g/l
Fructose	4.8	g/l	4.5**	BG: 0,2g/l
Zucker vor Inversion	5.5	g/l	4.5** ber.	
Zucker nach Inversion	5.7	g/l	4.5** ber.	
Gesamtsäure ber. als Weinsäure	4.9	g/l	5.3**	
Freie SO2	< 5	mg/l	6.3phot. */**	
Gesamte SO2	37	mg/l	7.7 phot */**	
Relative Dichte	0.9951		8.4**	

Portugieser = 9-26%

Portugieser 0,7 – 1,8%

 NMR is an efficient high throughput tool for food screening under full automation.

基于NMR的食品筛选是一种高通量、全自动化的有效分析手段

- One measurement, but many parameters combines targeted and non-targeted screening.
 通过一次检测(约15分钟)可以获得大量的参数,包含靶向和非靶向的分析结果
- NMR is now well established in fruit juice, wine and honey screening; the developed procedure can be taken as a model for many other materials.
 目前筛选平台可应用于果汁、葡萄酒和蜂蜜。这个成熟的平台还可以扩展到其他类型的食品
- Before a screening is started, one must define and check SOPs. Decision made here often cannot be corrected later. 在对其他类型的食品建立新的筛选方案之初应该确定好SOP
- Extensive validation guarantees correct results.
 对结果进行广泛的验证,确保结果的正确性
- We offer SOPs for juice, wine, honey, edible oils and coffee. Biofluid and tissue SOPs are also available.

我们提供果汁、葡萄酒、蜂蜜、食用油和咖啡的SOP,也提供临床上的体液和组织的SOP

www.bruker.com

Q & A

是否有问题?

请您在 Q&A 面板中提交您的问题 我们做的如何?

当您退出webinar的时候,请填写您对此次 webinar的评价,我们非常感谢您的反馈。

Thank you!

Wenxin.xu@bruker.com Lu.shan@bruker.com

