

Post-ionization mobility separation for MALDI based analysis of isomeric cannabinoids in plant samples

Arne Behrens¹, Corinna Henkel² and Uwe Karst¹

¹ University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany

² Bruker Daltonik GmbH, Fahrenheitsstraße 4, 28359 Bremen, Germany

Isomeric cannabinoids in the focus -

- More than 100 isolated cannabinoids in cannabis
- Biosynthesis based on cannabigerolic acid
- Content of the two most discussed cannabinoids, CBD and THC, differs between varieties

Variety

Bediol

Bedrocan

Industrial her

		CONVENSI	
	CBD	THC	
np	High	< 0.2 %	
	8 %	6.3 %	

22 %

0.1 %

Cannabidiol (CBD)

- Non-psychoactive
- Anti-epileptic, anxiolytic
- Wide distribution in consumables

Δ9-Tetrahydrocannabinol (THC)

- psychoactive cannabinoid
- Inconsistent global regulation

MALDI-TIMS-MS: Potential for fast and direct isomer

nstrumentation and workflow—

The measured mobility (K_0) is inversely

proportional to the collisional cross section (Ω)

- → Dual ESI/MALDI source
- Carrier gas vs. electrical field: ions are trapped, pre-
- → Detection via QTOF-MS resolution of 50,000 (FWHM @ *m*/*z* 1222)

Desorption and ionization

Fixation by double sided

9AA matrix sublimation

conductive tape

Ion mobility separation

- 1/K₀ range: 0.15 Vs/cm²
- Cycle time: 300 ms
- Mobility Resolution: R~100

timsTOF fleX (Bruker Daltonik)

- separated and serially eluted
- enables MS² and high

m/*z* analysis

Mobility resolved MS¹ and MS² experiments

a) Mobility separation of isomers

Fig. 2: Extracted ion mobilograms for m/z 357.21 \pm 0.01 of different varieties.

- Detection of numerous cannabinoids by single MALDI-TIMS-MS scans within ms
- Main signals beyond m/z 350 \rightarrow carboxylic acids are predominant in plants
- Multiple signals in the mobility dimension indicate the presence of isomers
- Isomers THCa and CBDa are almost baseline separated, signal maxima in line with sample declaration

Results

b) Isomer identification via mobility resolved MS²

Fig. 3: Mobility resolved fragmentation patterns of the isomers CBDa and THCa.

- After their separation in the TIMS funnel, isomers are serially fragmented in the qToF
- Distinct isomer identification based on characteristic fragmentation patterns

c) Imaging of isomer distribution

Fig. 4: Auto fluorescence image and molecular distributions of the cannabinoids CBDa, THCa and CBGa of a random mixture of bedrocan, bediol and industrial hemp.

- A random mixture containing three different cannabis varieties was prepared on ITO slides
- Molecular images are extracted based on mass and mobility ranges
- The isomers THCa and CBDa show an inverse distribution, while their precursor CBGa is evenly distributed among different varieties

d) Mobility based cannabis identification

- laser focus and the absolute signal intensities
- Bediol 2.2 ± 0.55 Industrial hemp

Fig. 5: Histograms of I_{CBDa}/I_{THCa} for different cannabis varieties.

- Topological differences can result in local variations of the
- However, the ratio between CBDa and THCa signal intensities remains unaffected
- Cannabis varieties can be identified based on their characteristic I_{CBDa}/I_{THCa}

Industrial hemp

Bedrocan

Fig. 6: Colour coded distribution of different cannabis varieties based on their characteristic I_{CBDa}/I_{THCa}.