Stanford MEDICINE

Dr. Benedikt Geier 🕑 @benebio3l

A simplified system for a complex task Imaging the metabolite landscape of a novel infection model

Helicobacter pylori is a gramnegative bacterium that infects the stomachs of 50% of the world's population. In 1% of infected individuals H. pylori causes gastric cancer.

H. pylori colonizes the epithelia of the stomach's antrum

Benedikt Geier¹, Jessica A. Klein¹, Youlim Kim², Nannan Tao⁴, Xiaowei V. Lu³, Manuel Amieva^{1,2}

Metabolites are small molecules below 1500 Da that serve as immediate effectors that enable the nutritional exchange, communication and defense between bacteria and their hosts.

My research focuses on the site-specific chemistry *H. pylori* induces in proliferating cells deep in the gastric glands. Along the chemical changes, I want to reveal what happens at the cellular interface where both partners meet.

Ouestions

Free-swimming *H. pylori* show different metabolic phenotype than those adhered to the gland epithelium.

Microscopy-guided microcolony metabolite analysis

Modified after Enycloapedia Britannica, Inc.

Deep in the gastric glands, H. pylori forms epithelial microcolonies that promote proliferation of the precursor and stem cells. *H. pylori* induces proliferation by injecting the virulence factor cytotoxin-associated gene A (CagA). Although accellerated tissue growth coincides with increased cancer risk, the molecular interactions that allow *H. pylori* to perturb the gastric gland microniche and induce cancerogenesis remain unknown.

1<u>0 µm</u> Modified after Sigal et al., Gastroenterology, 2015

connective tissu

<u>10 μm</u>

Spatial metabolomics is a label-free technique that allows imaging the tissue chemistry at micrometer scales. To measure the *in situ* metabolome of *H. pylori* at tissue sites of infection I developed a correlative chemical imaging workflow combining mass spectrometry imaging and fluorescence microscopy.

'yes'

Cryo-sectioning

Metabolite imaging Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) \bigcirc

actin

"Each MS peak is an image!"

Relative ion abundance

_ 100 %

1<u>00<mark>0 μ</mark>m</u> netabolite netabolite netabolite

netabolite

Ion Overlay image

Immunohistochemistry

Where are the bacteria?

Acknowledgements & Affiliations

I thank the Human Frontiers in Science Program for funding my fellowship. I thank Michael Angelo and Bruker Daltonics for access to their MSI instruments.

¹Stanford University School of Medicine, Dept. of Pediatrics and Infectious Diseases ²Stanford University School of Medicine, Dept. of Microbiology and Immunology ³Stanford University School of Medicine, Dept. of Pathology ⁴Bruker Daltonics, San Jose, CA