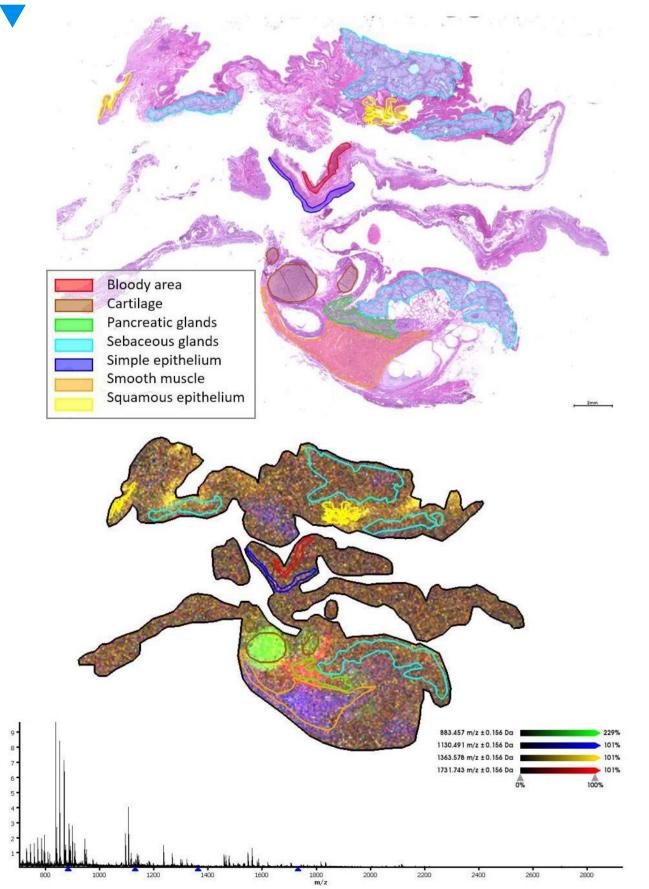
Cross-normalization for MALDI MSI data improves site-to-site reproducibility Universität Bremen PROTEOPATH

Tobias Boskamp*^{1,2}, Rita Casadonte³, Lena Hauberg-Lotte², Soeren-Oliver Deininger¹, Jörg Kriegsmann³, Peter Maass² ¹Bruker Daltonics GmbH & Co. KG, Bremen, Germany; ²Center for Industrial Mathematics, University of Bremen, Bremen, Germany; ³Proteopath GmbH, Trier, Germany; *tobias.boskamp@bruker.com

Introduction

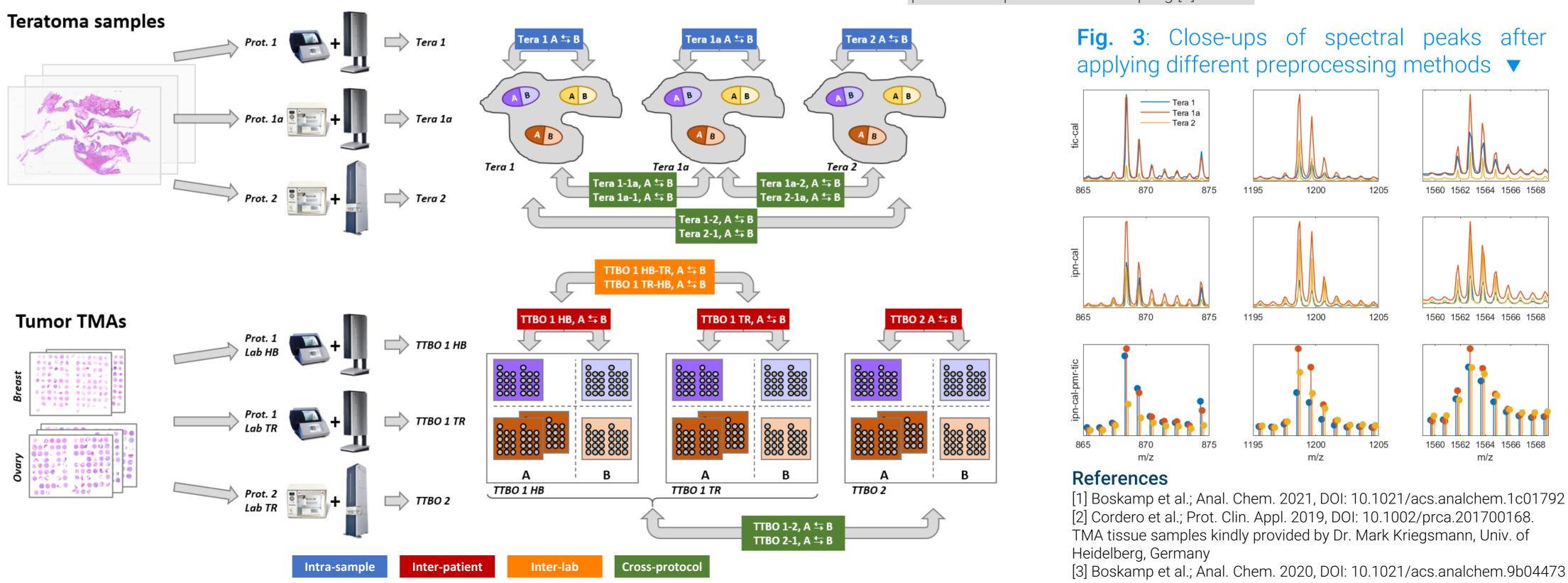
- Applications of MALDI imaging in larger studies often suffer from limited reproducibility, caused by batch effects as well as technical and protocol variation.
- We evaluated different data normalization methods for their capability to reduce technical variation without adversely impacting biological information.
- Our proposed cross-normalization aligns statistical intensity distributions across spectra and samples (intensity profile normalization, IPN), and does a model-driven resampling particularly designed for peptide imaging (peptide mass resampling, PMR) [1].

Fig. 1: MALDI MSI data from a human teratoma. Histological annotations of seven different tissue phenotypes were provided.



Methods

- A human teratoma sample (Fig. 1) was used, as well as five TMAs of breast and ovarian tumors [2].
- MALDI MSI was done at two labs according to three different protocols and instrumentation (Fig. 2 left).
- Different preprocessing pipelines were applied, including TIC and MFC normalization, as well as our proposed cross-normalization (Table 1, Fig. 3).
- Different classification tasks were executed, covering intra-sample, inter-patient / slide-to-slide, inter-lab, and cross-protocol scenarios (Fig. 2 right)



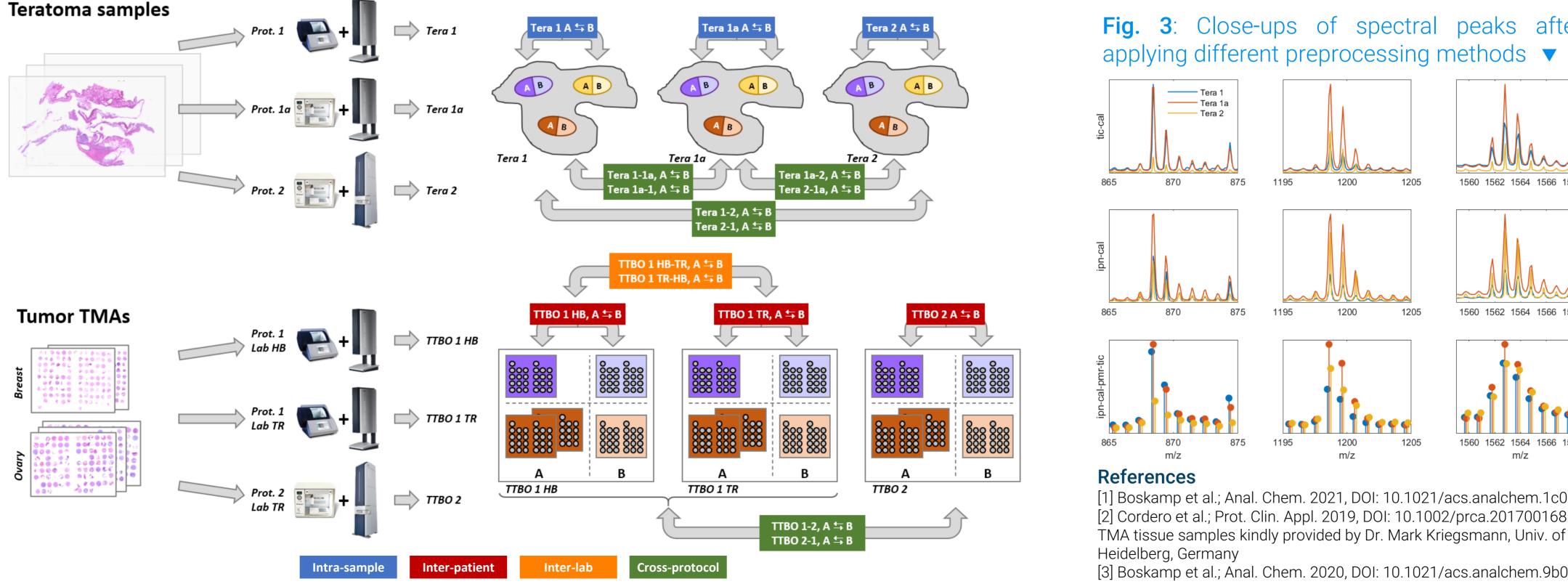


Fig. 2: Experiment design and classification tasks used on the teratoma and tumor TMA datasets. Different configurations of training and test data, from intra-sample to cross-protocol scenarios, all tasks including 2-fold (A vs. B) cross validation.

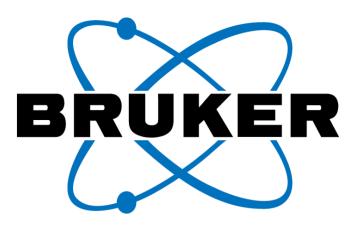
Results

- In terms of AUC classification accuracy, the proposed cross-normalization scheme outperforms conventional normalization methods (Fig. 4).
- Particularly high AUC gains are observed in inter-lab and cross-protocol tasks, but also in some slide-toslide tasks where stronger batch effects are assumed.
- Both intensity normalization as well as peptide mass resampling are essential for successful crossnormalization.

Table1:Preprocessing methods used in this study

ethod	Description
2	Total ion count nor
ıfc	Inter-sample media
	normalization
n	Intensity profile no
al	Mass recalibration
mr	Peptide mass resa

For research use only. Not for use in clinical diagnostic procedures.



malization an fold change

ormalization [1] mpling [1]

Tera 1

Tera 1a

Tera 2

TTBO 1 HB

TTBO 1 TR

TTBO 1 HB-TR

TTBO 1 TR-HB

TTBO 2

Tera 1-1a

Tera 1-2

Tera 1a-1

Tera 1a-2

Tera 2-1

Tera 2-1a

TTBO 1-2

TTBO 2-1

0.4

0.5

tic-cal

\star ipn-cal

mfc-cal

tic-cal-pm

mfc-cal-pmr

cal-pmr-tic

cal-pmr-mfc ipn-cal-pmr

ipn-cal-pmr-tie

cal-pmr-ipn

0.9 AUC performance for 🔺 different preprocessing methods,

grouped by classification task

Conclusions

- Proposed cross-normalization is highly effective in reducing technical variation, preserves biological information.
- Joint evaluation of multiple experiments is feasible even under conditions where preparation and acquisition protocols are subject to variation.
- Conventional normalization methods fail to compensate batch effects in slide-to-slide, inter-lab or cross-protocol scenarios.

Innovation with Integrity