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Case study: Results

Case study: Interpretability

Case study: Classification

Conclusion
Machine learning interpretability can be an efficient tool enabling us to build a high-performance, user-friendly computational workflow for biomarker
discovery in imaging mass spectrometry data. While the case study presented here focuses on the recognition of different anatomical structures, the
same approach can be used for disease biomarker discovery. Interpretability methods enable the discovery of explanatory principles for how the spatial
distribution and relative concentration of certain molecular features relate to the classification of different regions of the sample.

Global post-hoc interpretability methods, such as permutation importance and Shapley additive explanations, can be used to estimate the predictive
importance of each molecular species with regards to a specific classification task and obtain a ranking of the features in descending order of
predictive importance. The top-ranking features can then be used as candidate biomarkers worthy of further clinical investigation.

The classification results are presented hereunder: on the left, a random forest model has recognized the brain (and spinal cord) and, on the right, an XGBoost
model has recognized the liver. The two models achieve high predictive performance with 99% accuracy, 99% precision and 98% recall. Note that these
measures may slightly overestimate generalization performance because of how the training and testing sets were defined: the red masks do not exhaustively
cover all pixels of the target organs. Pixels that are located on the boundaries of the target organs are not included in the training and testing sets because
they are difficult to label manually. Yet it is precisely on the boundary pixels that a classifier is most at risk of making erroneous predictions.

Biomarker discovery by feature ranking:
We translate the problem of biomarker discovery into a feature ranking problem: the molecular features of the random forest and gradient boosting
machines are ranked in descending order of relative predictive importance in order to narrow the scope of further clinical investigation from hundreds of
candidates down to a short list of highly discriminative features.

Machine learning model interpretability
Model interpretability is the ability to explain the decision-making process of a supervised ML model by reporting the relative predictive
importance of its features [1]. The importance of a feature is the degree to which it influences the model’s prediction, considering both its
direct effect (i.e. correlation with the prediction) and its indirect effect (i.e. correlation between features).

Global interpretability methods investigate the relationship between the features that the model uses as inputs and the model’s output,
whereas local interpretability methods focus on explaining specific decisions made by the supervised ML model [2]. We use global
interpretability methods to discover explanatory principles for how the spatial distribution and relative concentration of certain molecular
features relate to the classification of certain regions of a tissue sample. Since biomarker discovery is ultimately about understanding which
molecular features drive the biochemical process being modeled, we believe that it is necessary to go beyond the scope of predictive
modelling and provide the user with the tools to understand why a supervised ML model makes a certain prediction.

Interpretability methods can be categorized as model-specific or model-agnostic [2] : model-specific interpretability methods derive
explanations by examining the model’s structure and parameters, whereas model-agnostic interpretability methods treat the model as a
black-box and derive post-hoc explanations for its predictions. We focus on model-agnostic interpretability methods that are applicable to any
type of supervised ML model.

Challenge:
Biomarker discovery in imaging mass spectrometry (IMS) data entails finding, among hundreds of molecular species, a few indicators of a specific biological
state (e.g. patho-physiological condition, anatomical structure). Imaging mass spectrometry (IMS) can concurrently map the spatial distribution of
thousands of distinct molecular species across the surface of a sample. While this makes IMS particularly well suited for biomarker discovery, it is
impractical to manually examine large, high-dimensional IMS datasets in search for highly discriminative molecular species.

Solution:
We propose a novel machine learning (ML) workflow that can automatically narrow down massive lists of potential molecular species to a shortlist of most
promising candidate biomarkers. ML interpretability methods computationally estimate the predictive importance of each molecular species with regards to
a specific classification task and obtain a ranking of the features in descending order of predictive importance. Ranking the features facilitates the
identification of a panel of molecular species that are strongly indicative of disease, and thus have a high likelihood of being good biomarkers.

Imaging mass spectrometry data:
Our dataset was acquired by MALDI-TOF MS from a sagittal whole-body
section of a mouse-pup using the prototype Bruker timsToF Pro in positive ion
mode. A mean mass spectrum of the dataset was generated and peak-picked
to produce a feature list of 879 ion species. The m/z acquisition range is
300-1200 and the pixel size is 50x50 μm. The dataset consists of a total of
164,808 pixels. Classification is therefore performed on a matrix of 164,808
instances and 879 features. Our machine learning workflow is implemented in
Python 3.7.

Two model-agnostic interpretability methods, namely permutation importance (PI) and Shapley additive explanations (SHAP), were used to computationally
estimate the predictive importance of each molecular species with regards to the recognition of the mouse-pup’s brain by a random forest model and the
mouse-pup’s liver by an XGBoost model, respectively.

Permutation importance (PI):
PI is a global interpretability method developed by Breiman [3]. The PI of a feature is the average decrease in model accuracy due to randomly permuting its
values across all observations. PI measures the degree to which a supervised ML model relies on a specific feature. PI was implemented using the eli5 library.

Shapley additive explanations (SHAP):
SHAP is a local interpretability method developed by Lundberg [4] based on Shapley values from cooperative game theory. SHAP regards the features as
players that form coalitions (i.e. ordered subsets) to achieve the supervised ML model’s prediction (i.e. payout). The Shapley value of a feature, or local SHAP
score, is its contribution to the model’s prediction of a specific observation, averaged over all possible feature orderings. SHAP can be used as a global
interpretability method for the purpose of biomarker discovery: a global measure of feature importance is obtained by averaging each feature’s local SHAP
score across all pixels. We use a fast implementation of SHAP for decision-tree based models called TreeExplainer [5], from the shap library.

The ion images of two highly discriminative features are presented:
the top ion image has a strong influence on the random forest model
that recognizes the brain (i.e. maximum PI score), whereas the
bottom ion image has a strong influence on the decision-making
process of the gradient boosting machine that recognizes the liver
(i.e. maximum global SHAP score using TreeExplainer). These ion
images are displayed using a pseudo-color scale whose brightness is
indicative of the relative molecular concentration measured at a
given pixel.

The list of mass-to-charge values hereunder summarizes the results
of our ML workflow for biomarker discovery in the mouse-pup
dataset. Four top-ranking chemical species are listed by their mass-
to-charge ratios in descending order of predictive importance:
• Mass-to-charge ratios of mouse-pup brain biomarkers:

m/z 801.5, m/z 740.4, m/z 764.6, m/z 739.4
• Mass-to-charge ratios of mouse-pup liver biomarkers:

m/z 820.6, m/z 821.6, m/z 891.6, m/z 892.6
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Classification task:
Our aim is to recognize the mouse-pup’s brain and liver using a one-versus-all classification approach and automatically find biomarkers corresponding to
these different organs. We choose to use ensembles of decision trees for the classification of the IMS data because such models are non-linear,
computationally efficient, robust to overfitting and scale-invariant. A random forest is used to recognize the mouse-pup’s brain and a gradient boosting
machine is used to recognize the mouse-pup’s liver. The random forest was implemented using the scikit-learn library, whereas the gradient boosting
machine was implemented using the xgboost library. Regarding the masks used for training these ML models (see Figure below), the red pixels belong to the
brain/liver and are therefore labeled positive; the grey pixels do not belong to the brain/liver and are therefore labeled negative; and the pink pixels cannot
be reliably annotated and are therefore excluded from the training and testing sets.
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