Characterization of Hydrodeoxygenated Bio-oils by APPI/ESI FT-ICR Mass Spectrometry

<u>Timo Kekäläinen¹</u> // Idoia Hita Del Olmo^{2,3} // Tomás Cordero Lanzac² // Gift Ogechukwu Okafor¹ // Pedro Castaño^{2,3} // Janne Jänis^{1*}

¹University of Eastern Finland, Department of Chemistry, Joensuu, Finland. ²University of the Basque Country UPV/EHU, Department of Chemical Engineering, Bilbao, Spain. ³King Abdullah University of Science and Technology (KAUST), Multiscale Reaction Engineering, KAUST Catalysis Center, Thuwal, Saudi Arabia

*Correspondence to: janne.janis@uef.fi

Introduction

Fast pyrolysis is a promising method for thermochemical conversion of biomass into liquid (bio-oil) and solid (charcoal) products.
There is a need to refine bio-oils further in order to improve their combustion properties.
The effect of three different hydrodeoxygenation (HDO) catalysts towards the chemical composition of raw poplar pyrolysis oil was studied.

Materials and methods

- Poplar pyrolysis oil (sample S1) produced at 450 °C using a lab-scale spouted bed reactor.
- Raw pyrolysis oil hydrotreating by using 1) PtPd/C, 2) NiW/C and 3) CoMo/C catalysts mixed with a HZSM-5 zeolite catalyst with a Si/AI support (corresponding samples: S2, S3 and S4, respectively).
- 12-T (+)APPI/(–)ESI FT-ICR MS (Bruker SolariX XR).
- Data interpretation with PetroOrg 16.0 software.

<u>Results</u>

Figure 3. Isoabundance contour plots of double bond equivalent (DBE) versus carbon number for the HC class compounds (only radical cations) by APPI FT-ICR MS.

Conclusions

- The oils were composed of aliphatic, aromatic and polyaromatic hydrocarbons and oxygenated compounds (lipids, carbohydrates, lignin).
- The proportion of the HC class increased clearly following HDO with NiW/C performing best for oxygen removal and hydrocracking.
- Significant amounts of condensed phenolic compounds still remained in the samples with any catalyst.

Figure 1. Heteroatom class (HC and O_y) distributions by APPI (upper) and ESI (lower) FT-ICR MS. Minor N_xO_y and S_zO_y classes are omitted.

Acknowledgements

- EU Horizon 2020 Research and Innovation Programme (Grant Agreement 731077).
- Academy of Finland/Strategic Research Council (Grant 293380).
- Biocenter Finland and Biocenter Kuopio.
- European Regional Development Fund (Grant A70135).

UNIVERSITY OF EASTERN FINLAND, DEPARTMENT OF CHEMISTRY