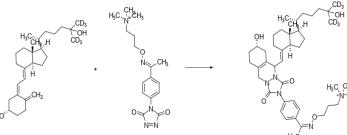
Spatial Localization of Vitamin D metabolites in Mouse Kidney by Mass Spe

Karl W. Smith^{1,3*}, Bryn Flinders², Paul D. Thompson³, F. Cruickshank⁴, C. Logan Mackay⁴, Ron M.A. Heeren⁵, Diego F. Cobice¹ ¹ Mass Spectrometry Centre, Ulster University, Coleraine, Northern Ireland, UK ²Dutch Screening Group, Maastricht, Netherlands ³NICHE, Ulster University, Coleraine, Northern Ireland, UK ⁴ SIRCAMS, EastChem School of Chemistry, University of Edinburgh, Scotland, UK ⁵M4I Institute, Division of Imaging Mass Spectrometry, Maastricht, Netherlands *Currently at National High Magnetic Field Laboratory (NHFML), Tallahassee, FI, USA. Corresponding author: d.cobice@ulster.ac.uk

INTRODUCTION


- Vitamin D plays a major role in biological functions such as bone health and immune health^{1,2} and as a potential treatment for diseases including cancer³
- Metabolites of vitamin D possess poor ionization efficiency that can be enhanced by chemical derivatisation (CD)
- Mass spectrometry imaging (MSI) may provide information about tissue-specific metabolism

•Aims of the study

- To develop an on-tissue chemical derivatisation (OTCD) method
- To identify and assess intratissue metabolism

MATERIALS AND METHODS

- \bullet Mice tissue sections were cryosectioned at 12 μm and thaw mounted onto I.T.O. slides for MSI experiments
- PTAD, DMEQ-TAD and Amplifex were all screened for OTCD ionization efficiency using labelled VitD metabolite
- Artistic airbrush application and Bruker's ImagePrep were assessed for reliable derivatisation reagent deposition
- MALDI-MSI was performed on 9.4T SolariX with CASI and FlexImaging. DESI-MSI was performed on 2D DESI source with Waters Xevo G2-XS mass spectrometer. Both in positive ion mode
- Confirmatory LC-MS/MS was carried out on kidney homogenate on a ACQUITY UPLC with an ABSciex 6500 QTrap

Figure 1. 1,25-VitD₃-Ampiflex derivatization reaction

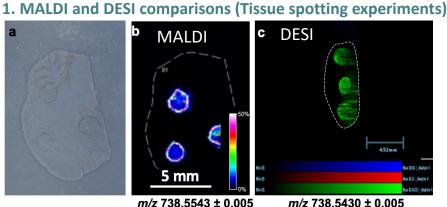


Figure 2: Tissue spotting experiments using a d_6 -25-(OH)-D₃ analysed by MALDI-FT-ICR-MSI (b) and DESI-qTOF-MSI (c). MALDI-MSI demonstrated best ion production yields with less analyte diffusion. Amplifex was the best candidate, producing the most abundant signal with best S/N **3. MALDI-MSI of endogenous Vit D metabolites**

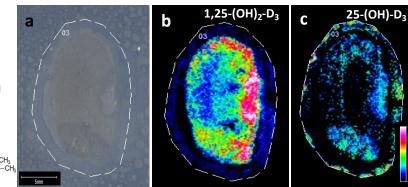


Figure 4. Molecular distribution of endogenous VitD metaboli mouse kidneys (b) 1,25-dihydroxyvitamin D₃ (m/z 748.5001) and (hydroxyvitamin D₃ (m/z 732.5058) using Amplifex OTCD-MALDI-M

RESULTS

2. Derivatization reagent application (Manual Vs Automated)

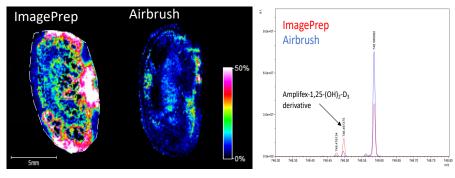
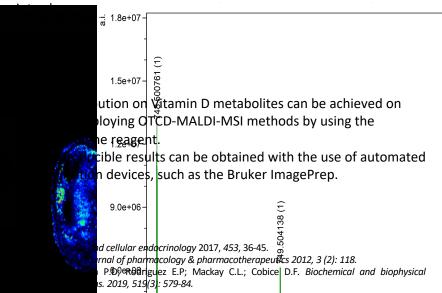



Figure 3. A customised ImagePrep method was assessed and compared to manual airbrush. The ImagePrep outperformed the airbrush in tissue-to-tissue reproducibility, S/N ratios and analyte diffusion. The ImagePrep

