

# **Lipidomic Changes Associated with Ether Lipid Deficiency in Germinal Centers of Spleen:** A Multimodal IMS Approach Marissa A. Jones <sup>1,2</sup>, Sung Hoon Cho<sup>3</sup>, Nathan Heath Patterson <sup>1,4</sup>, Raf Van de Plas<sup>5</sup> Clay F. Semenkovich <sup>6-8</sup>, Mark R. Boothby <sup>3,9-12,</sup> Jeffrey M. Spraggins <sup>1,2,4</sup>, Richard M. Caprioli <sup>1,2,4,9,12</sup> <sup>1</sup>Mass Spectrometry Research Center, <sup>2</sup>Department of Chemistry, Vanderbilt University, Medical Center, Nashville.; <sup>4</sup>Department of Biochemistry, Vanderbilt University, Vanderbilt U Nashville, Tennessee; <sup>5</sup>Department of Electrical Engineering, Katholieke University School of Medicine, Saint Louis, MO; <sup>7</sup>Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO; <sup>8</sup> Department of Cell Biology, Washington University, Nashville, Tennessee; <sup>10</sup>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee; <sup>12</sup> Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; **DISCOVERY EXPERIMENTAL DESIGN** HYPOTHESIS TESTING **OVERVIEW Goal:** Determine lipids that localize to germinal centers and their subregions. • Germinal centers (GCs) are sites of B cell proliferation, activation-induced cytidine deaminase **Goal:** Investigate the effect of an ether synthesis defect on germinal center lipids. (AID) hyper expression, selection, and differentiation formed during **humoral immune** responses. GCs are vital for generating high-affinity antibodies (Ab) and durable Ab secretion. • Multimodal imaging incorporating Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), autofluorescence/fluorescent emission (Fem), SCiLS immunofluorescence (IF), and hematoxylin and eosin (H&E) staining, enables the correlation Laser Modification • Many ether lipids were found to localize to GCs. This finding led us to **hypothesize** that GCs • 30 µm Raster have **enhanced peroxisomal activity** and this organelle leads to the synthesis of ether • Negative Ion Mode 3x • 25 µm Smart Walk PexRap, a peroxisomal enzyme that executes a late step in ether lipid synthesis, was eliminated by • PexRap, a peroxisomal enzyme that executes a late step in ether lipid synthesis, was eliminated Mice of the indicated genotypes (possessing or lacking an Aicda BAC transgene engineered to using a tamoxifen-induced genetic system. Ten days after inducing generalized *Dhrs7b* deletion, in mice causing a **decrease in ether lipids;** the lipid localizations were investigated. express AID-GFP translational fusion protein) and immunization status were used at 6-7 weeks adult C57/BL6 mice, wild-type (WT, n=4) and PexRAP-deficient (KO, n=3) were immunized with of age. Spleens harvested 8 d postimmunization were used to generate triads of serial tissue BACKGROUND sheep red blood cells and sacrificed seven days later. Multimodal imaging (MALDI IMS, H&E, sections (12 $\mu$ m thickness) followed by fluorescence emission ( $F_{em}$ ) and other imaging modalities. Fem, and IF) was performed. Data was further analyzed using a ROC analysis in SCiLS. MALDI IMS is a technology that enables the unlabeled mapping of molecules directly from RESULTS **DATA ANALYSIS** tissue sections. Ideal for untargeted discovery and spatial comparisons to histological data, the tool is adept for the study of the global lipidome. Lipidomics, a subset of metabolomics, allows Registration non-ether **Fluorophore-Directed** lipids are Ether and for the investigation of the molecular products of metabolism, thus enhancing molecular Intra-section Intra-section AUC: 0.185 separated by receiver operator curve insights into patient phenotypes. Lipid studies are specifically well suited for IMS due to lipid Intra-section Data Mining Registration Registration (ROC) analysis. IMS data was imported into 0.8 m/z 740.51395±4.163 mDa Registration bioavailability, lipid bio-integration, and lipid involvement in structural components such as the SCiLS (Bruker Corp.) and root mean square 200 H&E TRITC normalized. Then imaging regions were

- of biological structures to lipid localization.
- lipids that may play a role in **hypoxic mediation**.

cell membranes which define each cell.





Ross et. al. Histology: A Text and Atlas with Correlated Cell and Molecular Biology 2006. For information, see our recent publication in Analytical Chemistry: more https://pubs.acs.org/doi/10.1021/acs.analchem.0c00446

PE(O-18:0\_20:4) 752.5591 762.5088 PE(16:0 22:6) PE(P-18:1\_22:6) 772.5314 PE(O-18:0 22:6) 776.5596 786.5303 PS(18:0\_18:2) 812.5460 PS(18:0\_20:3) PI(16:0\_20:4) 857.5182 16 6 883.5360 PI(18:1\_20:4) 14 887.5609 PI(18:0 20:3) PA: Glycerophosphate, PE: Phosphatidylethanolamine

Inter-section Registration

em

FITC

TRITC

DAPI

**DB Matches** 

6

H&E

200 µm

Eosin

m/z

671.4647

699.4957

699.4957

699.4957

714.5069

716.5224

725.5120

740.5246

742.5389

746.5130

748.5273

Hemotoxylin

Lipid ID

PA(18:1 16:1)

PA(18:1\_18:1)

PA(18:0\_18:2)

PA(20:2\_16:0)

PE(18:2 16:0)

PE(18:0\_16:1)

PA(20:3\_18:0)

PE(18:1\_18:2)

PE(18:0\_18:2)

PE(P-16:0\_22:6)

PE(O-16:0\_22:6)







|                                                |          | hhii<br>hhii | Fusion |
|------------------------------------------------|----------|--------------|--------|
| vs. non-gc                                     | VS. DZ   | error.       | Slope  |
| 0.09                                           | 0.0007   | 0.0700       | 222.1  |
| 0.03                                           | 0.0002   | 0.3617       | 277.2  |
| 0.03                                           | 0.0002   | 0.3617       | 277.2  |
| 0.03                                           | 0.0002   | 0.3617       | 277.2  |
| 0.04                                           | 0.2      | 0.0532       | 102.5  |
| 0.1                                            | 0.9      | 0.0586       | 243.8  |
| 0.007                                          | 0.02     | 0.5334       | 63.2   |
| 0.01                                           | 0.01     | 2.8872       | 112.8  |
| 0.04                                           | 0.0006   | 1.0478       | 290.5  |
| 0.005                                          | < 0.0001 | 1.4641       | 280.0  |
| 0.007                                          | 0.2      | 0.3701       | 236.6  |
| 0.01                                           | < 0.0001 | 0.3229       | 219.0  |
| 0.03                                           | 0.2      | 2.5810       | 167.0  |
| 0.03                                           | 0.01     | 5.0005       | 163.3  |
| 0.05                                           | < 0.0001 | 0.8795       | 244.7  |
| 0.02                                           | 0.0004   | 2.9771       | 279.4  |
| 0.03                                           | 0.3      | 2.9771       | 37.1   |
| 0.009                                          | 0.002    | 0.8210       | 400.6  |
| 0.003                                          | 0.1      | 3.2528       | 565.8  |
| 0.0006                                         | 0.07     | 3.9163       | 252.9  |
| e, PS: Phosphatidylserine, PI: Phosphoinositol |          |              |        |



**localization** that could be **elucidated** through ROC analysis. • Correlated this ether lipid synthesis defect to qualitative **decreases** in numbers of GCs and their sizes.

