

Structural elucidation of sodium- and potassium-cationized phosphatidylcholines using electron induced dissociation Tingting Yan¹; Matthias-Erich N Born¹; Boone M. Prentice¹ ¹Department of Chemistry, University of Florida, Gainesville, FL

Poster #: ThP 144 **Zoom Q&A:** 921 6218 7355 6/11, 5:30-6:30 PM CST

- Purpose: To better identify lipid isomers and understand EID fragmentation ion chemistry.
- **Approach:** Lipid standards were analyzed by EID using a MALDI FT-ICR MS (Bruker Daltonics).
- **Results:** The intensity ratio of fatty acid to ketene fragment ions is sensitive to the fatty acyl chain positions for $[PC+Na]^+$ and $[PC+K]^+$ ion types.
- Significance: EID of Na and K-cationized PCs can more easily distinguish *sn*-positional isomers compared to EID of protonated PCs.

FRAGMENTATION NOMENCLATURE

Isolation

Figure 2. Bruker solariX FT-ICR MS. EID conditions

were as follows: 23V cathode bias (EID e- energy), 35V

ECD lens voltage, and 0.050s ECD pulse length.

Mass analysis

EID

RESULTS

(e) $[PC_{16:0/18:1(9Z)}+K]^+$, and (f) $[PC_{18:1(9Z)/16:0}+K]^+$. Chol=Choline. Displayed spectra are averages of 100 spectra.

	CONCLUSIONS
	 EID intensity ratio of fatty acid to ketene fragment ions for [PC+Na]⁺ and [PC+K]⁺ precursor ion types is more sensitive to <i>sn</i>-position than that of [PC+H]⁺. EID of [PC+Na]⁺ and [PC+K]⁺ ion types enables facile identification of <i>sn</i>-chain isomers. Future work will use EID to identify [PC+Na]⁺ and [PC+K]⁺ ion types produced directly from the tissue in MALDI imaging mass spectrometry.
	REFERENCES
	 M-E.N Born and BM Prentice. International Journal of Mass Spectrometry, 2020, 116338. RL Griffiths and J Bunch, Rapid Communications in Mass Spectrometry, 2012, 26, 1557-1566. JW Jones, C.J. Thompson, CL Carter, MA Kane, Journal of Mass Spectrometry 2015, 50, 1327– 1339. JL Campbell and T Baba, Analytical Chemistry, 2015, 87, 5837-5845.
1 - 21	ACKNOWLEDGEMENTS
3H +K-Chol	 Prentice Lab Members Bruker Daltonics Department of Chemistry, University of Florida Office of Research College of Liberal Arts and Sciences
m/z	