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TIMSquant™: Precise and scalable MS1 quantification for DDA and DIA using 
transfer learning, targeted analysis and semi-supervised machine learning

▪TIMSquant represents an accurate, scalable MS1-XIC-based quantification approach, replacing 

MBR algorithms by state-of-the-art machine learning techniques.

▪Together with mass accuracy and isotope assessment, ion mobility represents the most 

important criteria for selection of true quantitative signals.

▪TIMSquant is natively integrated within Bruker ProteoScape, allowing the extension of Run & 

Done to quantitative applications.
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Bruker ProteoScape™ (BPS; formerly PaSER) has been transforming into a comprehensive proteomic 

data analysis platform that integrates all common data processing steps within a single framework.

In label-free analysis of data-dependent acquisition (DDA) datasets, different approaches have been 

established either based on MS1 feature finding (MS1-FF) or the extraction of ion chromatograms 

(MS1-XIC). Although both solutions can typically quantify the identified peptide precursors accurately 

within single runs, MS1-XIC-based approaches frequently have a higher recovery rate when the 

targeted signals are guided by peptide-precursor-defined properties such as expected retention time 

(RT), ion mobility (IM), and isotopic pattern. However, defining these properties based on peptide-

spectrum-matches (PSMs) can be difficult, because in DDA, due to the stochastic and heuristic 

selection of precursors for fragmentation, the proportion of missing values dramatically increases 

when multiple runs are quantitatively compared. To alleviate this issue, “match-between-run” (MBR) 

algorithms are typically employed, aligning LC gradients and transferring peptide identifications to 

runs with missing values. While this represents a suitable solution for small- to medium-sized sample 

cohorts, the approach struggles to scale to the alignment of hundreds or thousands of samples.

To address these challenges, we have developed TIMSquant, a novel MS1-XIC-based algorithm that 

replaces MBR by run-wise transfer learning of global RT and IM prediction models. Using the 

additional IM separation dimensions of timsTOF instruments provides increased specificity, while 

advanced isotope ion chromatogram scoring in combination with semi-supervised machine learning 

and statistical validation provides consistent quantification consistency with controlled error rates of 

quantitative features of identified peptides and aligned missing values.

 

TIMSquant uses confident PSMs in run-wise and global contexts from upstream database search 

engines in addition to MS1 spectra as input. For each run separately, global machine learning 

models based on AlphaPeptDeep[PMID:36433986] for the prediction of RT and IM are adapted to 

local sample and instrument conditions using transfer learning and a randomly sampled subset of 

several hundreds to thousands of confidently identified peptides. Using the full set of peptides 

confidently identified in global context, the missing values not identified in run-specific context are 

selected and the local models are used to predict the run-specific RT and IM values within each run. 

In addition, RT and IM-dependent window widths based on the deviation of measured and predicted 

values of identified peptides are estimated.

The full set of peptide precursors, their measured or predicted RT and IM coordinates and windows, 

are then used to extract precursor ion chromatograms from the MS1 scans within predefined 

boundaries. Chromatograms are extracted for the first three isotopes. Chromatographic peak 

picking based on OpenSWATH[PMID:24727770] is then used to define peak borders of the 

candidates using the first isotope, whereas chromatographic scoring assesses cross-correlation 

and mutual information between isotopes. Deviations of expected values in m/z, isotope pattern, RT 

and IM dimensions complement the set of scores that is derived for each candidate signal. Using an 

XGBoost-based semi-supervised learning approach provided by PyProphet[PMID:33333029], a 

classifier is trained to separate the identified peptides from a null model derived by predicting RT 

and IM coordinates for mutated peptide sequences. This classifier and the null model then allow to 

score and statistically validate quantitative features based on the predicted coordinates for missing 

values[PMID: 28673088].

TIMSquant exports quantitative values on peptide-precursor and protein levels using the MaxLFQ 

algorithm[PMID:24942700, PMID:31909781]. The analysis run-time scales linearly with the number 

of samples and all steps can be run independently, allowing for full parallelization of the workflow.
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Fig. 1: The TIMSquant workflow. A) TIMSquant requires identified peptides in run-specific and global contexts as input, as well as the MS1 raw data. B) Transfer-learning-based alignment is used as replacement for match-
between-runs. Quantification is conducted by an ion chromatogram extraction (XIC)-based approach. C) All steps of TIMSquant can be parallelized. Global context confidence estimates based on PSMs of all individual runs 
need to be provided to define the total set of peptides that will be quantified. D) Classification of candidate signals based on XIC and mass & ion mobility scores. E) Cross-correlation shape and coelution scores across retention 
time (RT) typically are among the most discriminative scores. F) Mass and Ion Mobility (IM)-based scores provide orthogonal evidence for the correctness of candidate peptide features. G) The combined XGBoost classifier, 
combining several different partial scores, provides superior performance to the individual components.

To assess the performance of our method, we used the established LFQbench 

strategy[PMID:27701404] in combination with dda-PASEF measurements of differentially mixed 

human, yeast, and E.coli samples, identically as described previously. In total 5 replicates were 

measured for both Sample A and B. As reference, we used MaxQuant (2.4.2.0) with default 

parameters, with MBR enabled and disabled. Our comparison shows that MaxQuant (without MBR) 

and TIMSquant quantify similar numbers of peptides (Fig. 2). However, the number of complete 

quantification events (5 quantifications in both Sample A & B) is substantially higher for TIMSquant 

than MaxQuant. Whereas the number of partial quantifications (5 quantifications either in Sample A 

or B) is similar, MaxQuant (with MBR) has many more incomplete quantification events (at least 1 

quantification in Sample A or B).
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Scoring features considered:
• Peak candidate features

• Intensity
• Signal-to-noise
• Apex ∆IM
• Apex ∆RT
• Apex ∆m/z (ppm)
• Peak width
• Mutual Information (MI score)

• Isotope pattern
• Manhattan
• RMSD
• Spectral Angle

• Isotope error
• Intensity ratio
• Cross-correlation of shape 
• Cross-correlation of co-elution
• Log SN score
• MI score
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Assessment of quantification 

accuracy (Fig. 3) suggests that 

TIMSquant is similarly 

accurate as MaxQuant 

(without MBR), while providing 

much more complete 

quantification across the 

replicates. In contrast, 

MaxQuant (with MBR) provides 

lower quantitative accuracy.

Figure 2: LFQbenchmark quantification performance. Peptide and protein-level coverage is 
depicted for TIMSquant, MaxQuant (with MBR), and MaxQuant (without MBR).

Fig. 3: LFQbenchmark quantification 
performance. (A) Protein level CV by 
species acquired from TIMSquant.  
Violin plots (B&D) and Scatterplots 
with corresponding distributions 
suggest that TIMSquant (B&C) 
performs similarly in terms of 
quantitative accuracy to MaxQuant 
(D&E), while providing more 
consistent quantification 
performance.
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