Microanalysis with high spectral resolution: the power of QUANTAX WDS for SEM

Bruker Nano Analytics, Berlin, Germany Webinar, September 14, 2017

Presenters

Dr. Jörg Silbermann Product Manager WDS, Bruker Nano Analytics, Berlin, Germany

Dr. Michael Abratis Sr. Application Scientist WDS, Bruker Nano Analytics, Berlin, Germany

Microanalysis with high spectral resolution: the power of QUANTAX WDS for SEM

OUTLINE:

- QUANTAX WDS an overview
- •The XSense[™] spectrometer: working principle and spectral resolution
- •EDS vs. WDS: the need for high spectral resolution
- •Sample measurement data and application examples focusing on high spectral resolution

QUANTAX WDS System Components

QUANTAX WDS: integral part of the QUANTAX family

XSense[™] WD spectrometer

XSense WD Spectrometer Setup and Working Principle

- Parallel Beam Optic (PBO) transforms X-rays diverging from the sample into a parallel beam
- Polychromatic beam undergoes Bragg diffraction at flat analyzer crystal
- Angle O between beam and crystal surface and crystal lattice constant 2d determines the energy that passes through to the detector
- X-ray detection by a flow proportional counter

XSense WD Spectrometer Spectral resolution

- Spectral resolution usually defined via the *full* width at half maximum (FWHM) of an elemental line peak
- Natural line widths are in the 0.2-3 eV range
- Peak broadening due to spectrometer effects: In a PB-WDS:
 - Imperfections of analyzing crystals/multilayers (crystal defects, inter-layer diffusion, waviness of bilayer boundaries)
 - Imperfect parallelization of beam due to (A) aberrations of the optic, (B) optical misalignment.

7

XSense WD Spectrometer Spectral resolution

- Spectral resolution usually defined via the *full* width at half maximum (FWHM) of an elemental line peak
- Natural line widths are in the 0.2-3 eV range
- Peak broadening due to spectrometer effects: In a PB-WDS:
 - Imperfections of analyzing crystals/multilayers (crystal defects, inter-layer diffusion, waviness of bilayer boundaries)
 - Imperfect parallelization of beam due to (A) aberrations of the optic, (B) optical misalignment.

XSense: Minimization of A:

 Use of a grazing incidence mirror optic which (in comparison with a polycapillary-based optic) produces a highly parallel beam of low divergence

Grazing incidence mirror optic:

low beam divergence

XSense WD Spectrometer Spectral resolution

- Spectral resolution usually defined via the *full* width at half maximum (FWHM) of an elemental line peak
- Natural line widths are in the 0.2-3 eV range
- Peak broadening due to spectrometer effects: In a PB-WDS:
 - Imperfections of analyzing crystals/multilayers (crystal defects, inter-layer diffusion, waviness of bilayer boundaries)
 - Imperfect parallelization of beam due to (A) optic figure/slope errors, (B) optical misalignment.

XSense: Minimization of B:

 Spectrometer equipped with 3-axis optic positioning unit + powerful optical alignment software algorithm

grazing incidence optic + auto-optic alignment:

highest possible resolution from a PB-spectrometer

3-axis optic positioning unit

QUANTAX WDS EDS vs. WDS

Typical EDS peak overlap:

cps/eV

• In SDD-based EDS peak broadening is much more pronounced, resolutions are in the 40-120 eV range

WDS cps

• Limited resolution of EDS leads to frequent peak overlaps, mainly in the low energy range

WDS ideally complements EDS in demanding

applications, where resolution is critical

XFlash™

QUANTAX WDS Resolving common overlaps in EDS microanalysis

Element	Interferences	∆eV	Samples or applications where the			
and line	with		overlaps are found			
Cu-L	Νа-Кα	18	Biological samples (grid)			
As-L	Νа-Кα	79	Biological samples (stain or fixative)			
Ag-L	CI-Kα	10	Biological samples (stain or fixative)			
Ru-L	S-Кα	54	Biological samples (stain or fixative)			
Os-M	Al-Kα	5	Biological samples (stain or fixative)			
U-M	Κ-Κα	22	Biological samples (stain or fixative)			
Sr-Lα	Si-Kα	31	Silicates (feldspars in particular)			
Υ-Lβ	Ρ-Κα	18	Phosphates			
Υ-Lβ	Zr-Lα	46	Silicates (zircon), oxides (zirconia)			
S-Κα,β	Mo-Lα; Pb-Mα	14; 38	Minerals, lubricants, sulfides, sulfates			
Τί-Κβ	ν-κα	20	Steels, Fe-Ti oxides			
V-Kβ	Cr-Kα	13	Steels			
Cr-Kβ	Mn-Kα	47	Steels			
Mn-Kβ	Fe-Кα	87	Steels			
Fe-Kβ	Со-Ка	128	Steels, magnetic alloys			
Co-K β	Ni-Kα	169	Steels, hard surfacing alloys			
W-Μα,β	Si-Kα,β	35	Semiconductor processing			
Τа-Μα,β	Si-Kα,β	27	Semiconductor processing			
Τί-Κα	Ba-Lα	45	Optoelectronics, silicates			
		-				

Overlaps known from biological, geological and material sciences and industries

Modified after Goldstein et al. (2007). Scanning Electron Microscopy and X-Ray Microanalysis. Springer

QUANTAX WDS and EDS Geological samples I: Pb sulfide

 Δ S-K α – Pb-M α : 38 eV

QUANTAX WDS and EDS Geological samples II: Mo sulfide

 Δ S-K α – Mo-L α : 14 eV

QUANTAX WDS and EDS Geological samples III: REE phosphates

 Δ P-K α - Y-L β : 18 eV; Δ P-K α - Y-L α : 92 eV

 Δ Zr-L α – Y-L α : 120 eV; Δ Zr-L α – Y-L β : 46 eV

QUANTAX WDS and EDS Application in material science II: glass

 Δ Na-K α - Zn-L α : 28 eV; Δ Na-K α - Zn-L β : 5 eV

QUANTAX WDS and EDS Material science III: semiconductors

 Δ Si-K α – Ta-M α : 28 eV; Δ Si-K α – Ta-M β : 27 eV

QUANTAX WDS and EDS Comparison of WDS and EDS resolution

Element	Atomic	X-ray	Energy	FWHM	WDS	FWHM	Resolution
	No.	line	[keV]	EDS [eV]	diffractor	WDS [eV]	improvement
Si	14	Κα	1.740	75	PET	3.5	21x
Р	15	Κα	2.014	77	PET	5	15x
S	16	Κα	2.307	85	PET	7	12x
Y	39	Lα	1.922	82	PET	6.3	13x
Zr	40	Lα	2.042	83	PET	7.2	12x
Мо	42	Lα	2.293	87	PET	9.5	9x
Та	73	Μα	1.712	71	PET	6	12x
W	74	Μα	1.775	74	PET	6.4	12x
Hg	80	Μα	2.195	80	PET	9	9x
Pb	82	Μα	2.345	91	PET	11.9	8x

QUANTAX WDS and EDS Resolution vs. deconvolution I

Deconvolved EDS spectrum of tungsten silicide (WSi₂)

QUANTAX WDS and EDS Resolution vs. deconvolution I

Highly resolving WDS spectrum of tungsten silicide (WSi₂)

QUANTAX WDS and EDS Resolution vs. deconvolution II

Quantitative results in atomic percentages (5kV)

Sample	Element	Stoichio- metry	EDS ¹	EDS ²	WDS
MoS ₂	Мо	33.3	39.0	34.5	33.9
	S	66.7	61.0	65.5	66.1
WSi ₂	W	33.3	20.2	32.6	33.4
	Si	66.7	79.8	67.4	66.6

¹standardless, ²standard-based

QUANTAX WDS and EDS High spectral resolution for mapping

WDS x 1E3 cc

0.6

Combined WDS and EDS mapping

Summary of todays WDS Webinar

- Bruker QUANTAX PB WDS on SEM
- XSense WDS facilitates high spectral resolution analyses
- Applications include biological, geological and material sciences and industries
- Deconvolution methods cannot replace true spectral resolution
- High spectral resolution is important for qualitative and quantitative analyses as well as mapping
- QUANTAX WDS is a powerful tool for scientific and industrial applications

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Innovation with Integrity