# TXRF analysis of cell culture media and medical microsamples



- saving time, money and lives

Bruker Nano Analytics, Berlin Webinar, January 18<sup>th</sup>, 2018



## Welcome



### **Speakers**

Dr. Hagen Stosnach Applications Scientist TXRF Berlin, Germany



Dr. Armin Gross Global Product Manager TXRF Berlin, Germany



## Itinerary



### Part I: Cell cultures

- Cell cultures background
- Method development for element analysis of cell culture media
- TXRF analysis of high performance cell culture media
- Summary and conclusion

### Part II: Biological and medical microsamples

- Protein analysis
- Bioassay analysis
- Summary and outlook



## Part I: Cell cultures Background

## Cell cultures Background

### Application of cell cultures

- Biopharmaceuticals pharmaceutically active proteins and nucleic acids
- Clinical research: tissue cells for therapeutic purposes
- Study of elementary cellular processes without classical animal experiments





## Cell cultures Background

### Cell culture media

- Natural environment of cells has to be imitated
- Standardized media, e.g. DMEM,1 g/l or 4.5 g/l glucose
- Media contain amino acids for protein biosynthesis, vitamins and inorganic salts for metabolic processes, carbohydrates for energy production
- Nutrient (P, K, Ca, Zn, Fe) and trace elements (Se, Mn) nutrient sources, co-factors in enzymatic reactions
- Contaminations reduce yield of the biopharmaceuticals may cause necrosis of the cells





## Cell culture media Objective



### **Objective 1**

- Development of a TXRF method for cell culture media
  - 1. Optimize sample layer on disc, standard DMEM media
  - 2. Determination of LOD / LOQ
  - 3. Reproducibility

### **Objective 2**

Measurement of nutrient elements in cell culture media

### **Objective 3**

- Apply method to modern high performance media
  - 1. QC: identify contaminants
  - 2. Spike experiments for method detection limits

## Cell culture media Objective



### Samples

- Commercially available DMEM, 1 g/l or 4.5 g/l glucose
- Mammalian media from two German suppliers Sugars conc. 8 g/l
  - Human Embryonic Kidney (HEK)
  - Chinese Hamster Ovary (CHO)
  - Baby Hamster Kidney (BHK)
  - Invertebrate (IKZ)
  - Feed media (20 g/l glucose)

## Cell culture media TXRF spectrometer



### S4 T-STAR - Unique benefits

- Three excitation to detect most elements modes of the PSE
- 60/100 mm<sup>2</sup> detectors improved sensitivity for lowest limits of detection
- New analytical angle scan for depth profiling and layer analysis
- Sample geometry flexibility
- measurement of discs, microscopy slides, wafers etc.
- Motorized beam path automatic beam adjustment and QC procedures
- Large sample capacity up to 90 sample discs, multi-user operation
- Most modern instrument/measurement status software display, statistical functions





## Method development for element analysis of cell culture media



1. Optimize sample layer on disc

Comparison of different modifier solutions (smoothing agents)

- DMEM media with 50 200 ppm P, S, K, Ca
- Addition of 10% modifier (1% Triton X-100, Ethanol, PVA (0,3 g/l))
- Dilutions down to 1 : 100
- Internal standard Sc

Measurement parameter S4 T-STAR

- Mo excitation, 50 kV, 1000 μA
- W-L excitation, 50 kV, 1000 μA
- Measurement time 1000 s



### Results

- Ethanol leads to satisfying recovery rates and standard deviations < 5% (< 10% at 1:100)</li>
- Overlap of IS Sc with Ca, following experiments with V
- Mo excitation did not provide good data for P and S





### Results

 W-L excitation delivers reproducible results for P and S, if Ethanol was used



#### 1/19/2018

## Cell culture media Method development

- 2. Reproducibility
- Two preparations
  - 700 μl sample + 10 μl
    IS + 290 μl EtOH
  - 100 μl sample + 100
    ml EtOH + 790 μl H<sub>2</sub>O
    + 10 μl IS
- Better than 10%, typically < 3%</li>
- Dilution recommended due to high amount of macro nutrient
- EtOH contained trace impurities (Fe)
   -> ultrapure or
   HPLC grade required







### 3. LOQ

EtOH treated media

|            | LOQ (mg/l) |
|------------|------------|
| Magnesium* | 122,7      |
| Phosphor   | 4,165      |
| Sulfur     | 1,205      |
| Potassium  | 0,200      |
| Calcium    | 0,122      |
| Iron       | 0,016      |

\*) W-L excitation

Sample preparation

- 700 µl media
- 290 µl EtOH
- 10 μl V (IS)





# TXRF analysis of high performance cell culture media

## Modern high performance media Quality control



# Analysis of mammalian cell culture media

- Method developed for standard media
- 24 media in triplicate
  72 discs

### Measurement parameter S4 T-STAR

- Mo excitation, 50 kV, 1000 μA
- W-L excitation, 50 kV, 1000 μA
- W-Brems excitation, 50 kV, 1000 μA
- Measurement time 1000 s

| Ethanol     | 290 µl |
|-------------|--------|
| IS Vanadium | 10 µl  |
| Sample      | 700 µl |

| Volume on disc | 10 µl |
|----------------|-------|
| Drying         | 30° C |

## Modern high performance media Quality control



# Results mammalian cell culture media

- Micro-nutrient and contamination test of different media batches
- Application of Mo and W-L excitation
- Typical concentration range 1 to 1000 ppb
- Distinct differences between cell lines



| СНО  | Chinese Hamster Ovary      |
|------|----------------------------|
| HEK  | Human Embryonic Kidney     |
| IZK  | Invertebrate cell cultures |
| Feed | Feed media                 |

## Modern high performance media Quality control



### Limit of detection

- LOD down to single digit ppb
- W-L significantly improves the detection of light elements (factor 2 - 4)
- Recommended measurement time for routine analysis = 300 s





### Preparation of spike media

- 1 ml of one high performance medium
- Two spike elements per sample concentrations see table
- Measurement in triplicate
  15 samples = 45 discs

### Measurement parameter S4 T-STAR

- Mo excitation, 50 kV, 1000 μA
- W-L excitation, 50 kV, 1000 μA
- W-Brems excitation, 50 kV, 1000 μA
- Measurement time 1000 s

| Spiked element concentrations (µg/l) |     |     |     |     |      |
|--------------------------------------|-----|-----|-----|-----|------|
| Pb                                   | Mn  | Se  | Ni  | Cr  | Cd   |
| 5                                    | 20  | 5   | 10  | 15  | 300  |
| 10                                   | 50  | 10  | 20  | 30  | 500  |
| 20                                   | 100 | 20  | 50  | 50  | 1000 |
| 50                                   | 200 | 50  | 100 | 100 | 2000 |
| 100                                  | 500 | 100 | 200 | 200 | 4000 |







### Measurements with Mo excitation





- Very low concentrations of Ni, Se
- Values close to ICP

| ICP         | 5,2 μg/l |
|-------------|----------|
| TXRF spike  | 3,6 µg/l |
| TXRF direct | 3,4 µg/l |





### Measurements with Mo excitation





| ICP         | 2,6 µg/l  |
|-------------|-----------|
| TXRF spike  | 4,4 µg/l  |
| TXRF direct | 15,8 µg/l |





## Measurements with W-L and W-Brems excitation



- ICP values for Cr questionable
- Cd quantification not successful

| ICP         | < 0,2 µg/l  |
|-------------|-------------|
| TXRF spike  | < 45 µg/l   |
| TXRF direct | < 77,3 µg/l |



## Summary and conclusion



- A rapid method for TXRF measurements of cell culture media was developed
- EtOH has to be used as smooting agent for optimal layer formation on quartz sample discs
- For contamination control detection limits in the one digit ppb range can be achieved
- The measurement of nutrient elements after a 1:10 dilution provides a reproducibility < 10%</li>



## Part II: Biological and medical microsamples

### Metal ions and enzymes

- Metal ions are important for the biological function of enzymes
- Various modes of metal-protein interaction: metal-, ligand-, enzyme-bridge complexes
- Metals serve as electron donors or acceptors, Lewis acids or structural regulators

(Riordan JF.: "The role of metals in enzyme activity.", Ann Clin Lab Sci. 1977 Mar-Apr; 7(2): 119-29

C. Arnaud: CEN, January 7, 2008 Volume 86, Number 1, p. 8







# Examples of metal ions in enzymes

| Role                         | Metals     | Protein                    |
|------------------------------|------------|----------------------------|
| Oxygen transport and storage | Fe, Cu     | Haemoglobin                |
| Electron transport           | Fe, Cu     | Cytochromes                |
| Nitrogen fixation            | Fe, Mo, V  | Nitrogenase                |
| Oxygen atom transfer         | Mo, W      | Oxidases, Reductases       |
| Alkyl group transfer         | Со         | Vitamin B <sub>12</sub>    |
| Hydrolysis                   | Zn, Cu, Mn | Hydroxylases, Peptidases   |
| Storage and transport        | Fe, Cu, Zn | Ferritin, Metallothioneins |



### Commonly used analytical techniques

- Atomic Absorption Spectrometry
  - Ca, Co, Cu, Fe, Mg, Mo, Ni, Se, Zn
- Flame/Inductively Coupled Emission Spectrometry
  - for most metals occurring in proteins
- Neutron activation analysis
  - limited availability
  - most reliable technique for a number of elements
  - very sensitive for some elements
  - some critical interferes, e.g. Na
- Inductively Coupled Mass Spectrometry
  - detection of ppb levels of >40 elements in one minute



### Analytical issues

- High matrix (polypeptides, buffers, salts)
- Sample viscosity, turbidity
- Removal of buffer, salts by dialysis or gel filtration total destruction of organic matter
- Significant sample amount needed microanalysis impossible
- Methods are expensive and laborious



Mounicou et al. (2004), Analyst, (2), 116-123

#### 1/19/2018

## Protein analysis TXRF spectroscopy

### Samples

Certified reference materials

- "BCR 273 Singe cell protein"
- "BCR 274 Single cell protein"

500 mg powderous sample were suspended in 25 ml pure water





### Sample preparation

First approach: mixing of microsamples in **vials** 

- 100 µl sample + internal standard
  - + 10 µl Sc (10 mg/l)
  - + 10 µl Ga (10 mg/l)











### Sample preparation

Second approach: mixing of microsamples on **discs** 

- 5 µl sample + 5 µl Sc/Ga solution (20 mg/l)
- 3 µl sample + 3 µl Sc/Ga solution (20 mg/l)
- 1 µl sample + 1 µl Sc/Ga solution (20 mg/l)







### S4 T•STAR

- Mo tube, 50 kV/1000 μA
- W-tube, 50 kV/1000 μA
- 60 mm<sup>2</sup> XFlash SDD
- 90 position sample changer
- Mo-K excitation, 1000 s
- W-L excitation, 1000 s
- W-Brems, 1000 s





### Results mixing in vials





#### Ρ 100000 40000 35000 Concentration (mg/kg) 20000 10000 10000 10000 Concentration (mg/kg) 1000 100 5000 0 10 µl 5 µl 3μl 1 µl 0,5 µl Reference 10 Accuracy for the light elements P (S and Cl) fluctuates with deposited sample amount 1 effect of sample height and size 0 Ρ Se Са Fe Zn Κ Mn Cu ■ 10 µl ■ 5 µl ■ 3 µl ■ 1 µl ■ 0,5 µl ■ Reference

### Results mixing in vials



#### Results mixing in vials





### Results mixing in vials

• The detection limits are directly related to the deposited amount





### Results mixing on discs







### Results mixing on discs



### Results mixing on discs



#### 1/19/2018



### Results mixing on discs

• The detection limits are directly related to the deposited amount



## Bioassay analysis Introduction



Saving lifes ...?

Not directly theirs...



## Bioassay analysis Introduction



Saving lifes...? But theirs...



#### 1/19/2018

Bioassay analysis TXRF spectroscopy

### Sample preparation

Sampling and preparing non-lethal amounts of blood (urine, saliva ...)

20 µl sample + 10 µl Ga (4 mg/l)







## Bioassay analysis TXRF spectroscopy



### Results

• Seronorm human serum CRM, S2 PICOFOX



## Bioassay analysis TXRF spectroscopy



### Results

• Serum samples from lab mice (publication in preparation)



## Summary and Outlook



The analysis of minute protein or serum samples by means of TXRF is possible

- Mixing of internal standard and sample in a vial is recommended
- Determination of detection limits for trace elements requires careful consideration of the sample amount

### Outlook

- Intensive analysis of bioassays is ongoing
- Measurements with W-Brems excitation (S4 T-STAR) to detect elements like Mo, I
- Method development for light elements with optimized calibration factors

Q & A



Any Questions?

Please **type in** the questions you may have for our speakers in the **Questions Box** and click **Submit** 







Innovation with Integrity

## Thank you for your attention!

www.bruker.com / www.s4tstar.com