

Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Bruker Nano Analytics Webinar July 1, 2021

Speakers

Kimberley Russell

Market Segment Manager
 Food & Agriculture, Bruker
 Nano Analytics

Andrew Lee

 Application Specialist Handheld XRF, Bruker Nano Analytics

 Director Product Management Handheld XRF, Bruker Nano Analytics

Webinar Agenda

Introduction

D2 Objectives

) 3 Managing the prevention of physical contaminants in food products

How handheld XRF technology helps quickly ID and source foreign objects

) 5 Creating a spectral fingerprint library with handheld XRF

Matching contaminants with a spectral fingerprint library and Artax PC software

Food Contaminant characterization with micro-XRF technique

)8 Summary

Questions & Answers

O2 Objectives

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Objectives

No manufacturer wants physical contaminants found in their products, but it happens. The faster you can identify it and determine if it is from faulty equipment, starting material, or even a false claim, the faster you can get production going again and minimize costs.

- Illustrate how handheld XRF can decrease the time required to ID a physical contaminant and locate its source
- Describe nondestructive handheld XRF technology and how it is used
- Explain how XRF spectral fingerprinting works to help find the source of contaminants in complex situations
- Describe best practices in creating a production floor ID data library of XRF spectral fingerprints
- Illustrate best practices in identifying contaminants with XRF spectral fingerprint matching software

O3 Managing the prevention of physical contaminants in food products

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Physical contaminants can be found in food products

Metal slivers and shards

Plastic and rubber pieces

Glass fragments

Stone and ceramic chips

Managing prevention of physical contaminants in end products

- I. Inspect food material with X-ray or metal detector
- 2. <u>Detect</u> foreign body
- 3. <u>Remove</u> product containing foreign body
- 1. <u>Identify</u> found contaminant to determine its source
- 2. <u>Correct</u> issue based on source of the contaminant

Potential sources of metal contaminants in manufactured foods

Illustration of baking production line equipment

Conveyor

Sorter/packager

Grinder/cutter

Mixer

Identification of the contaminant is critical

Metal

Plastic and rubber

Glass

Stone and ceramic

- Enhances physical contaminant QA/QC programs
- Monitors equipment for maintenance
- Reduces future delays in production
- Increases confidence in suppliers
- Assists with false claim investigations
- Helps optimize overall risk management

04 How handheld XRF technology helps quickly ID and source foreign objects

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Handheld XRF technology

- Easy to use
- Nondestructive
- Instant result
- Portable
- Used on site
- Cost effective
- Accurate

Periodic Table of Elements and X-ray Energies						
1 1.01 - 0.0007 Hydrogen		2 4.00 He 0.0002 Heilum				
3 6.94 Li 0.53 Litvium Ka 0.108	www.bruker.com/hhxrf	5 10.81 6 12.01 7 14.01 8 16.00 9 19.00 B 2.34 C 2.27 Ν 0.001 0 0.01 F 0.001 Ν 0.00 Baron Carbon Nitrogan Ruorine Non κα 0.849				
11 22.99 12 24.31 Na 0.37 Mg 1.74 Sodium Magnesium Kα 1.040 Kα 1.254		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
19 39-10 20 40.08 21 44.96 22 43.54 K 0.86 Ca 1.54 Sc 2.99 Ti 4.54 Potassium Caldium Scandium Scandium Titanium Kα 4.54 Δ 0.341 Δ 0.342 Kα 4.54 Caldium Titanium Kα 0.341 Δ 0.341 Δ 0.342 Kα 4.52	 23 b 0.9 24 b 200 55 b 39 26 b 38 c b 28 c 28 b 88 e9 6 5.5 30 b 5.3 27 b 28 c 28 b 88 e9 6 5.5 30 b 5.3 27 b 28 c 28	31 69/2 32 72/48 33 74/92 34 78/96 37 99/20 35 85/80 Gal 5.71 Ge 52.3 Assorbit See 3.81 Br 0.004 Gallium Gemanium Arsenic See 4.81 Br 3.12 Kr 0.004 Kα 9.251 Kα 9.866 Kα 10.543 Kα 11.224 Kα 11.924 Kα 12.648 Lα 1.098 Lα 1.828 La 1.329 La 1.481 La 1.585				
37 85.47 38 87.62 39 88.91 40 91.22 Rb 1.53 Sr 2.64 Y 4.47 Zr 6.51 Rubicium Strontium Yttrium Zr 6.51 Zr 6.51 Ku 13.396 Kα 14.165 Kα 14.95 Kα 15.75 Lα 1.692 Lα 1.806 Lα 1.924 Lα 2.044	11 92.99 42 95.95 43 (98) (44 0107) 45 102.91 46 106.42 17 107.87 48 112.41 Nb 8.57 Mo 10.22 Cc 11.50 Ru 12.37 Rh 12.41 Pd 12.02 Ag 10.50 Cd 8.65 Nobiburn Mohodarum Tchmetirum Rubreirum Rhodium Pallatirum Silver Cadrixium Cadrixium 21.67 Ag 22.173 Cadrixium Cadrixium Cadrixium Silver Cadrixium 23.173 Cadrixium 2.453 Ka 22.971 Ca3.81 La 2.983 La 2.393 La 3.183 La 3.183 <th>149 114821 50 11871 51 121.76 52 127.60 53 126.90 54 131.29 56 56 76 76 6.23 1 4.93 Xe 0.006 Antimory Tellurium I odine Xeon Xeon Xaon <t< th=""></t<></th>	149 114821 50 11871 51 121.76 52 127.60 53 126.90 54 131.29 56 56 76 76 6.23 1 4.93 Xe 0.006 Antimory Tellurium I odine Xeon Xeon Xaon Xaon <t< th=""></t<>				
55 132.91 56 137.33 57 138.91 72 178.49 Cs 1.87 Ba 3.59 Cesium Barium Lanthanum Hafrium Kα 30.973 Kα 32.194 Kα 33.442 Lα 7.839 Lα 4.265 Lα 4.466 Lα 4.647 Μα 1.646	Tat 180.95 74 196.26 75 196.27 76 192.22 78 195.08 79 196.37 80 200.55 Tat 180.95 74 196.27 78 22.61 17 22.65 Pt 21.46 Au 19.22 Hg 13.53 Tantalum Tungsten Rhenium Osmium Indium Platium Gold Mercury Ma 1.712 Ma 1.843 Ma 1.907 Ma 1.97.18 Gold Mercury Ma 1.712 Ma 1.843 Ma 1.907 Ma 1.902 Ma 1.921 Ma 9.123 Marcury	B1 204.37 B2 207.20 B3 206.98 B4 (209) B5 (210) B6 (222) B1 11.85 Pb 11.34 Bi 9.81 Po 9.32 At 7.00 Rn 0.01 Thailium Lead Bismuth Polonium Astatine Radon 0.01 L\[\alpha] 0.551 L\[\alpha] 0.839 L\[\alpha] 1.11.31 L\[\alpha] 1.24 10.249 M\[\alpha] 2.421 Ma 2.422 Ma 2.427 Ma 1.127 M\[\alpha] Ma 2.424 Ma 2.427 Ma 2.427 Ma 2.421				
87 (223) Fr 1.87 Ra 5.50 Francium Radium Lα 12.031 Lα 12.339 Lα 12.652 Mα 2.732 Mα 2.806 Mα 2.900						
Atomic number 35 79.90-1 Komic weight 35 23.0 Density (store)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 66 162.50 67 164.93 68 167.26 69 168.93 70 173.04 71 174.47 Dysprosium Holmium Erbium Tulium Ytterbium Lus 6.498 Lα 6.720 Lα 6.949 Lα 7.180 Lα 7.416 Lα 7.655 Mα 1.293 Mα 1.348 Mα 1.404 Mα 1.462 Mα 1.4526 Mα 1.526 Mα 1.580				
Bronine Element name Kα 11.924 Lα 1.481 Spectral line	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98 (251) 99 (252) 100 (257) 101 (258) 102 (259) 103 (262) Californium Ensteinium Fermium Mendelevium Nobellium Lawrencium				
		Handheld XRF				
Innovation with I	ntegrity					

Handheld XRF technology

Energy Dispersive (ED) X-ray Fluorescence (XRF) Spectroscopy

- Energy from an X-ray source aimed at a sample can eject electrons from an element's inner atomic orbital
- Outer electrons move into the voids to regain stability
- While moving in, the outer electrons generate energy characteristic of the element
- These characteristic energies are the fluorescent X-rays of the element

Electron orbitals of element's atom

Handheld XRF results

Handheld XRF metal alloy results

- Handheld XRFs configured with an Alloy Calibration include libraries with pre-defined alloy grades
- Alloy grades are defined based on their known chemical compositions
- An unknown metal sample is identified based on comparing its measured composition to those stored in the on-board alloy grade libraries

On-board Grade Libraries:

Bruker's handheld XRF Alloy Calibration includes extensive grade libraries for accurate alloy identification with more than 1,000 grade definitions covering various international standards. User selectable libraries include: EN-DIN, JIS, GB and other standards. They cover the following classes:

- Low alloy steels
- Cr-Mo steels
- Tool steels
- Stainless steel
- Zirconium alloys

- Specialty alloysNickel alloys
- Brasses
- Bronzes
- Cobalt alloys

- Zinc alloys
- Aluminum
- Titanium
- Exotic alloys

Alloy grade libraries can be edited, including the addition of other alloy definitions

🛃 Devi	ice Tools Wind	lows Help				
File - F	dit -					
	-		-			
	Base	Alloy Group	Comment	Alloy ID	UNSId	
1						
2						
	1					

Element Name	Min	Max	Balance	^
			0	
AI	0	0	0	
Si	0	0	0	
P	0	0	0	
s	0	0	0	
Ti	0	0	0	

Handheld XRF testing of a foreign metal object

- Small physical contaminants found in food products can be tested on the production floor or in the lab with handheld XRF analyzers
- As shown in previous slides, a found metal object can be identified by determining its composition, the type of metal alloy, and the alloy grade name
- There are 4 simple steps to ID small metal contaminants with handheld XRF

2. Select "Alloys" App

3. Position with camera

4. Press trigger & view results

Handheld XRF sourcing of a foreign metal object

Once you have identified the foreign material, in this case an alloy sample, the equipment or components made with that alloy grade can be inspected for wear and tear as the potential source.

Auger

Grinder/cutter

Mixer

Sorter/packager

If many components are all made of the same alloy grade, a little more work is needed to help determine its source.

Roller mill

05 Creating a spectral fingerprint library with handheld XRF

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Why create a spectral fingerprint library?

Typical Steels Found in Food Production Equipment

Types	Typical Applications
420 (martensitic)	Cooks and professional knives, spatulas etc
430 (ferritic)	Table surfaces, equipment cladding, panel (ie components requiring little formability or weldability). Used for moderately corrosive environments (e.g. vegetables, fruits, drinks, dry foods, etc).
304 (austenitic)	Vats, bowls, pipework, machinery parts (i.e. components requiring some formability or weldability). Corrosion resistance superior to 430.
316 (austenitic)	Components used with more corrosive foods (e.g. meat/blood, foods with moderate salt contents), which are frequently cleaned, with no stationary solids and not under excessive stress.
1.4539 (austenitic)	Used with corrosive foods (e.g. hot brine with solids that act as crevice forms, stagnant and slow moving salty foods).
1.4462 (duplex)	Used with corrosive foods (e.g. hot brine with solids, stagnant and slow moving salty foods). Higher strength than austenitics. Good resistance to stress corrosion cracking in salt solutions at elevated temperatures.
6%Mo. types (austenitic)	Used with corrosive foods (e.g. hot brine with solids, which act as crevice formers, stagnant and slow moving salty foods). Good resistance to stress corrosion cracking in salt solutions at elevated temperatures. Used in steam heating and hot work circuits, hot water boilers, etc

				e				
304SS								
42	Match	9.6 01-	04 22:3	В				
Tim	e 2.0							
EI	Min	%	Max	+/-				
Fe	66.35	71.80	74.00	0.37				
Cr	18.00	18.05	20.00	0.16				
Ni	8.00	8.36	10.50	0.16				
Mn	0.00	1.22	2.00	0.09				
Cu	0.00	0.17	0.50	0.03				
Мо	0.00	0.13	0.50	0.01				
Co		0.28		0.03				

Spectral fingerprint matching

Identification using spectral fingerprint matching

- Identification is based on library of reference spectra
- Very selective, can differentiate samples with similar Grade ID
- Works well for small samples down to 1mm (0.04") in size
- Works for all types of materials, including metals, plastics and ceramics
- More complicated to use than standard alloy grade ID

Creating a spectral fingerprint library

Create food contact material library

- Create a spectral fingerprint library of all food contact devices and components
- This library contains XRF spectra of these materials

This stage takes significant time to set up and collect data for; but once it's done, sourcing a contaminant is fast. And, the library can be added to whenever needed.

Measure Food Contaminant

Collect and clean the contaminant sample Measure contaminant sample to acquire XRF spectrum

This stage takes just a few minutes at most.

Identify Food Contaminant

Compare library spectra with contaminant spectra
 Find best match to determine source of the contamination

This stage can take up to 5 minutes; but, it significantly decreases the time needed to determine if a metal contaminant is from the production line or not; and, if so what the source is.

Best practices in setting up a spectral fingerprint library system

3. For each production line folder, create subfolders for both process equipment libraries and for physical contaminant tests

Best practices in setting up a spectral fingerprint library system

4. Determine a naming convention for each piece of process equipment tested to store its spectral fingerprint

Best practices in setting up a spectral fingerprint library system

5. Test each piece of process equipment and store its spectral fingerprint in the correct folder

Best practices in measuring a food contaminant

eate food contact material library

Create a spectral fingerprint library of all food contact levices and components

This library contains XRF spectra of these materials

This step takes significant time to set up and collect data for; but once it's done, sourcing a contaminant is fast. And, the library can be added to whenever needed.

2

Measure Food Contaminant

Collect and clean the contaminant sample
Measure contaminant sample to acquire XRF spectrum

This step takes just a few minutes at most.

Control to the second of the s

Identify Food Contaminant

Compare library spectra with contaminant spectra Find best match to determine source of the contamination This step can take up to 5 minutes; but, it significantly decreases the time needed to determine if a metal contaminant is from the production line or not; and, if so what the source is.

Best practices in testing a small food contaminant

- Isolate and clean the contaminant
- For small samples, use of XRF sample cups is recommended as it makes positioning and storing the sample easy
- Use the camera view to ensure optimal sample positioning
- Use of desktop stand is recommended for accuracy, ease-of-use and safety

Small Piece Foreign Body Identification Test

Best practice procedure for handheld XRF to test small samples:

- Prepare the sample using a thin Prolene® or Ultralene™ XRF film.
- 2. Place contaminant sample on a sample cup.
- 3. Place sample cup on the desktop stand.
- Position the cup with sample at the center of the XRF window.

O6 Matching contaminants with a spectral fingerprint library and Artax PC software

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

• Transfer all the contaminant spectra from instrument into the relevant folder

Production line E
 Production line F
 7 items

reate food contact material library

- Create a spectral fingerprint library of all food contact devices and components
- This library contains XRF spectra of these materials

I his step takes significant time to set up and collect data for; but once it's done, sourcing a contaminant is fast. And, the ibrary can be added to whenever needed.

Measure Food Contaminant

Collect and clean the contaminant sample
Measure contaminant sample to acquire XRF spectrum

This step takes just a few minutes at most.

And the second second

Identify Food Contaminant

Compare library spectra to contaminant spectra
Find best match to determine source of the contamination

This step can take up to 5 minutes; but, it significantly decreases the time needed to determine if a metal contaminant is from the production line or not; and, if so, its source.

- Spectral fingerprinting matching for complex situations is performed with Artax PC software.
- Artax is an advanced spectral viewing, <u>matching</u> and data analysis software package.
- Artax is used to both store and link information; it makes the management of large data sets easy.

After the spectral fingerprint folders for a given production line are populated with data, those folders are transferred into an Artax "Project" folder to be used as a library reference set for a found physical contaminant.

Analyze	Spectrum	Project				
Accun	nulate Spec	tra				
Evaluate Results						
👗 Evalua	tion	Ctrl+V				
Match	l					
Period	lic Table	Ctrl+T				

- Fingerprint spectra is then analyzed using the Artax "Match" program to find the most likely source of the contaminant.
- In the case below, Artax found 100 "hits" with a correlation of 90% or better.
- One Artax Match "hit" had a correlation of 99.99%

🚆 Artax - 8.0.0.443 001_Shred_Metal_2017-05-05								
File Device Measurement Analyze Spectrum Project Options Export User Help								
😂 🔚 🔳 001_Shred_Metal_2017-05-05	lg Q	► Elive	e Time: 10 s 📄 🗐 Standard 💽 🚛 🛓					
Line A - Process library metals.rtx × Spectrum Parameter Match Results Project								
🖨 🧰 Objects	Spec	trum: 001_	_Shred_Metal_2017-05-05					
Air_Deflector_COOKED_PROD_COOLER@	Sear	ch in: C:\U	Jsers\Esa.Nummi\Documents\1 Metal testing\Production line	A\Process Equipment	library - I			
CLR_DISCH_SCRW_CON@130617_114931								
	Start	enerqy:	<u>4 keV End energy:</u> 19 keV					
	Min.c	correlation.	90 % Number of hits: 100					
		onoreacon:						
Screw MILL CHARG CONV@130617_1149		Correlation/%	Spectrum	Date	enai 🔺			
Screw MILL CHRG CONV@130617 14493	1	99.99	Scraper MILL 012@130617 121534	67772017 916-55 AM	CULE			
Screw_MILL_Supply_CONV@130617_11493	-							
- Screw_TEMPEREDWHEAT_SCREW_C(2	94.94	CLR_DISCH_SCRW_CON@1JU617_1149J1	6/7/2017 8:26:25 AM	CH			
- Screw_WHT_INCLINE_SCREW_CONV@15	3	94.57	Shingle_COOKED_PROD_COOLER@130617_114931	6/7/2017 7:33:35 AM	C:\t			
- Screw_XOVR_MILL_CHRG_CON@130617_	4	94 41	Screw WHT INCLINE SCREW CONV@130617 114931	6/7/2017 7:27:58 AM	CM			
- Shingle_COOKED_PROD_COOLER@13061		31.11		0/1/2011 1:21:307 W	0.15			
Skin_A_CONTINUOUS_COOKER@130617_	5	94.28	Skin_XOVR_MILL_CHRG_CON@130617_114931	6/7/2017 8:41:07 AM	C:H			
Skin_CONT_CKR_DISC_INCLINE_SCRW@	6	94.26	Screw_A_CONTINUOUS_COOKER@130617_114931	6/7/2017 7:09:42 AM	C:\L			
Skin_MILL_CHARG_CUNV@130617_11493	7	94.20	Screw_XOVR_MILL_CHRG_CON@130617_114931	6/7/2017 8:38:18 AM	C:\I			
Skin WHT INCLINE SCREW CONV@1301	- 0	0/19	Seren MUL CHARG CONV/2120617 114921	C/7/2017 9-2E-07 AM	01			
Skin XOVR MILL CHRG CON@130617 11	0	34.10		0/1/2017 0.35.07 AM	0.10			
Caper_MILL_012@130617_121534	> 9	94.09	Screw_CONT_CKR_DISC_SCRW@130617_114931	6/7/2017 7:14:19 AM	C:/I			
	10	94.08	Screw_MILL_CHRG_CONV@130617_114931	6/7/2017 8:41:44 AM	C:\I _			
۰ III ا								

- Since identifying the source of a physical contaminant is critical, it is best practice to confirm Artax spectral matching results with a visual comparison.
- This is done by first overlaying the contaminant spectra on top of the closest matching library spectra.

• Finally, it is straightforward to copy-paste Artax spectral match information to Windows programs for reporting purposes.

Spectrum:	0004_Shred_Metal_	2017-05-19								
Search in:	Metal testing\Prod	uction line A\Pro	cess Equipme	nt library - M	etals					
Start energy:	4 keV	End energy:	19 keV							
Min. correlation:	98%	Number of hits:	10							
Correlation/%	Spectrum	Date	Filename							
99.99	Scraper MILL 012	6/7/2017 9:16	Production lin	ne A\Process	Equipment	library -	Metals\Line	e A - Proce	ess library n	netals.rtx
98.94	CLR_DISCH_SCRW	6/7/2017 8:26	Production lin	ne A\Process	Equipment	library -	Metals\Line	A - Proce	ess library n	netals.rtx
98.57	Shingle_COOKED	6/7/2017 7:33	Production lin	ne A\Process	Equipment	library -	Metals\Line	e A - Proce	ess library n	netals.rtx
x 1E3 Pulses										
1.2										
1.0-										
0.8										
0.6										
0.4										
0.2										
		- M	1							
0.0		· · ·	. , , ,		- A MAR					
5	e	6	7 - keV -		8		ę	Э		

05 Food Contaminant characterization with micro-XRF technique

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

BRUKE

Characterizing pieces less than 1 mm in size

- Bruker's handheld XRF can measure pieces as small as 1 mm in size
- Bruker's benchtop M1 MISTRAL micro-XRF can measure pieces as small as 100 µm in size
- Bruker's laboratory M4 TORNADO micro-XRF can measure pieces as small as 20 µm in size

M4 TORNADO Plus Micro-XRF analyzer

- Advanced Micro-XRF with the ability to record spectra, line scans and maps of the complete element range starting from carbon
- Micro-focus X-ray source with polycapillary lens < 20 µm spot size and high excitation intensity
- Measure solids, particles and liquids
- Fast XYZ stage for "on-the-fly" element distribution analysis with 20 x 16 cm range and 4 µm resolution
- Vacuum sample chamber with adjustable pressure
- Helium purge allows light element measurement of wet and fresh organic samples
- Dual optical microscopes for sample view and positioning with
- Advanced mapping and image processing features

M4 TORNADO Micro-XRF Elemental distribution maps

Elemental distribution map of a potato with different metal contaminants

Spectrum of Object 1 overlaid with possible alloy database matches

M4 TORNADO Micro-XRF Metal contaminant identification

Quantification and discrimination of low-alloy steel particles								
Element	Cr	Mn	Fe	Co	Ni	Cu	Nb	Мо
Reference	0.6	0.7	96.5	0	1.2	0.1	0	0.1
Isolated particle	0.6	1.2	96.3	0.6	1.1	0.1	0.2	0.1
Embedded particle	0.6	1.0	94.7	0.8	1.4	0.1	0.3	0.2

M4 TORNADO Micro-XRF Glass fragment identification

Glass fragment

Reference jar

wt. %	Fragment	Reference jar	Analytical error
SiO2	71.9	71.9	± 0.5
Al ₂ O ₃	1.7	1.7	± 0.2
Na ₂ O	12.5	12.5	± 0.5
K ₂ O	1.2	1.3	±0.1
MgO	< 0.5	< 0.5	± 0.2
CaO	12.1	11.9	± 0.2
SO3tot	0.23	0.22	± 0.03
Fe ₂ O ₃ tot	0.06	0.07	± 0.01
TiO2	0.02	0.03	± 0.01

BRUKER

M4 TORNADO Micro-XRF Glass particle identification

Glass fragments optical image

Glass fragments elemental map

- At-a-glance classification of glass fragments based on selected marker elements
- Elemental maps of various glasses can be created to save in a library for comparison to found glass fragment contaminants.

07 Summary

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Summary

Handheld XRF can decrease the time required to ID a physical contaminant and locate its source which can result in significant cost savings by taking the following steps:

- Develop a food contact library structure for each production line
- Take measurements of all the components on that production line and populate the library
- Measure the foreign material contaminant
- Determine the most likely source of the contaminant by matching the foreign material contaminant's spectral fingerprint to those in the production line's library using Artax PC software
- If a sample is less than 1 mm in size, use a micro-XRF to identify the material
- Inspect the identified component on the production floor for wear and tear

Questions & Answers

Webinar: Quickly Identify and Source Foreign Material Contaminants Found in Food Products with Handheld XRF

Any Questions?

Please write us: info.bna@bruker.com

640

FI

Thank you!

info.bna@bruker.com www.bruker.com

Innovation with Integrity