

XFLASH® 7 DETECTOR WEBINAR

Achieving sub-10 nm EDS spatial resolution on bulk specimen in SEM

Bruker Korea Application Team Sungji.choi@bruker.com

Presenters

Sungji Choi

 \rangle

- Application Specialist
- EDS / EBSD / FlatQUAD / Micro-XRF / WDS
- Bruker Nano Analytics, Korea

Outline

- Introduction XFlash[®] 7 for SEM
 - Fast signal processing
 - Data/spectrum quality at high speeds
 - Esprit LiveMap: real time chemical imaging
- Achieving sub-10 nm EDS spatial resolution on bulk specimen in SEM
 - Spatial resolution in SEM: Influencing factors, beam diameter, kV, optimal pixel size
 - Optimal mapping settings for high resolution measurement. What to consider?
 - Application examples:
 - semiconductor structures (FinFET)
 - Ni-based single crystal superalloy

The Generations of Bruker SDD

Si(Li) detector Energy resolution : = 136 eV(Mn-ka) Peltier cooling Silicon Drift Detectors (SDD) Best energy resolution : 121 eV (Mn-ka)

XFlash®6|100

XFlash[®] 7

Fast. Precise. Reliable.

XFlash[®] 7 - the detector for SEM and FIB-SEM

XFlash[®] 7T - the detector for TEM and STEM

XFlash[®] 7 – Be faster!

With up to **1,000,000 cps** the XFlash[®] 7 offers the highest real **analytical throughput** on the market for EDS detectors, meaning:

- Get best results in the shortest time
 - Fast survey maps
 - Fast particle analysis
- No risk of signal loss caused by slow read-out electronics
- Maximize your sample throughput without compromising quality
- ESPRIT LiveMap for real-time chemical imaging: use chemical information instead of BSE image signal to navigate on your sample

Spatial resolution

- Discern or separate distinct two features -> Spatial resolution
- Separate fine scale features -> High spatial resolution
- Fine scale/High magnification? -> Application

Sharp features – good spatial resolution

Blurred features - bad spatial resolution

Interaction volume – signal generation

Interaction volume – different materials & kVs

Interaction volume generation Si – W – Si

• 5 kV beam scanning across a 20 nm tungsten (W) layer in Silicon (Si)

Radial distribution of x-ray intensity vs. Beam diameter

Pixel size

© 2023 Bruker

Image drift in SEM – Types

- Beam conditions
- Pixel dwell time •

Drift Co. – a must!

Drift compensation and SEM image shift

- Image drift is corrected using the SEM image overlay compensation.
- Pixel XY position retained on a feature or interface
- In-lens detector input can also be used (SE contrast is too low)
- Reduced area mapping better drift correction range

High spatial resolution EDS measurements - Checklist

- Diameter of primary electron beam
- Pixel and map size avoiding oversampling
- Charging samples Starting with low kV and low beam current settings
- Drift correction
- Clean sample, holders and stage

micro-XRF map of a fingerprint

Minimize beam/carbon contamination on the samples!!

Application examples

1. CPU (FinFET)

Deprocessed CPU (FinFET) – PFIB delayering

Sample courtesy: Dr. Andrey Denisyuk, TESCAN ORSAY HOLDING, a.s, Brno, CZ

MAG: 3100x

Deprocessed CPU (FinFET) – PFIB delayering

Sample courtesy: Dr. Andrey Denisyuk, TESCAN ORSAY HOLDING, a.s, Brno, CZ

5 kV, 300kx MAG, Below M0

MAG: 300,000x HV: 5 kV

5 kV, 300kx MAG, Exactly M0

MAG: 300,000x HV: 5 kV

5 kV, 300kx MAG, Above M0

MAG: 300,000x HV: 5 kV

Automatic peak deconvolution – Above M0

Measurement parameters

Below M0

EDS MEASUREMENT PARAMETERS		
Count rate	15500 cps	
Probe current	380 pA	
Total counts	4.6E+7 (46M)	
Map size	300 x 225 px	

Exactly M0

EDS MEASUREMENT PARAMETERS		
Count rate	15200 cps	
Probe current	350 pA	
Total counts	4.2E+7 (42M)	
Map size	300 x 225 px	

Above M0

EDS MEASUREMENT PARAMETERS	
Count rate	15600 cps
Probe current	390 pA
Total counts	4.6E+7 (46M)
Map size	300 x 225 px

Drift correction

5 kV, 1Mx MAG, Below M0

EDS MEASUREMENT PARAMETERS		
Measurement time	545 s	
Count rate	15,600 cps	
Probe current	390 pA	
Dead time	18%	
Total counts	7E+6 (7M)	
H-FOV	300 nm	
Map size	200 x 150 px	

Application examples

2. Ni based single crystal super alloy

10 mm

MAG: 50,000 x HV: 5 kV

EDS MEASUREMENT PARAMETERS

Measurement time	15 min
Count rate	39,000 cps
Dead time	23%
Total counts	3.6E+7 (36M)
Magnification	50,000 x (FOV 2.4 µm)
Map size	600 x 450 px

EDS MEASUREMENT PARAMETERS

Measurement time	35 min
Count rate	20,000 cps
Dead time	12%
Total counts	3.4E+7 (34M)
Magnification	50,000 x (FOV 2.4 µm)
Map size	500 x 375 px

3 kV maps: FEG-SEM 1 vs. FEG-SEM 2

MAG: 50,000 x HV: 3 kV

MAG: 100,000 x HV: 3 kV

MAG: 50,000 x HV: 3 kV

MAG: 100,000 x HV: 3 kV

EDS MEASUREMENT PARAMETERS

Measurement time	30 min
Count rate	119,000 cps
Dead time	32%
Total counts	1.46E+8 (146M)
Magnification	20,000 x
Map size	1000 x 750 px

MAG: 20,000 x HV: 25 kV

1 µm

Example 7: Live chemical mapping of Sn–Cu solder region in Al-Si alloy

- LiveMaps at 1000 kcps OCR
- Automated hybrid elemental selection – manual + AutoID
- Spectrum extraction with mapping objects
- Trace element identification (single pixel enrichment) during live chemical mapping
- User defined resolution for ESPRIT LiveMap and easy adaptability/switch to conventional mapping from live chemical mapping

Detector used?

EDS/SEM SYSTEM CONFIGURATION

Detector type	Bruker 7 th Gen XFlash
Resolution	126 eV @Mn Ka
Window	SLEW AP3.3

Thank you!

Questions?

Please type in the questions in the **Q&A box** and press **Send**.