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Abstract

Phase and baseline corrections are important processing steps 
in the analysis of NMR spectra, and as a consequence, many 
different approaches have been developed in the past to carry 
out these tasks automatically. While these methods perform 
generally well, the performance of many of them suffers when 
applied to spectra with high signal densities such as e.g. proton 
spectra. Here, we introduce a deep learning-based method for 
phase and baseline correction of 1D 1H NMR spectra.  We 
show that this method represents a major step forward com-
pared to previously available TopSpin solutions. The algorithm 
provides consistently better correction of phase and baseline 
both for low- and high-field spectra, even reaching human-level 
quality results in phase correction accuracy. The new method 
is available in TopSpin as command apbk starting from version 
4.1.3, and it marks a further step towards the fully automated 
analysis of NMR spectra.
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than for X-nuclei due to the fact that the spectra are often more 
crowded and have fewer regions that can be used to estimate 
the baseline. This is especially true for low field NMR spectra, 
where the broader spectral features leave even fewer regions 
signal-free. Baseline detection for these edge cases is a chal-
lenging recognition task, well suited for deep learning. 

Over the past few years, deep learning has found a growing 
number of applications in NMR spectroscopy. It has shown 
great flexibility and to be able to perform various tasks ranging 
from signal processing to structure verification (see [11] and 
[12] for reviews). Examples include peak picking, [13] spec-
tral reconstruction,[14-15] and chemical shift prediction,[16] 
and show superior results compared to previous techniques. 
Bruker has recently deployed the deep learning-based com-
mand sigreg for signal region detection to TopSpin.[17]

Here, we introduce a deep learning-based method for auto-
matic phase and baseline correction of 1D 1H spectra. In this 
method, which is available in TopSpin and extends the existing 
command apbk to proton spectra, we use artificial intelligence 
- in particular, deep learning - to detect the baseline of crowded 
spectra. We show that it provides substantially better results 
compared to the frequently used apk / abs combination in 
TopSpin. The new method shows also higher consistency bet-
ween the results obtained for low- and high-field NMR spectra, 
making it interesting both for the Fourier 80 benchtop NMR 
system and high-field Bruker spectrometers.

Methods

The method presented here uses a deep neural network to 
identify and fit the baseline, in combination with a classical 
approach for phase correction, akin to the methods presen-
ted in [18] and [8]. After an initial rough phase correction, the 
solution is iteratively improved by deriving the baseline using 
the deep neural network and fitting a linear phase relation. We 
found such a combination of deep learning and classical fitting 
techniques to achieve better results than a pure deep learning 
approach. The neural network for baseline identification and 
fitting has a total of around 50k weights implemented in a 
combination of convolutional, recurrent and dense layers. The 
convolutional layers are set up as inception layers similar to 
GoogLeNet.[19]

Figure 2Introduction

The correction of phase and baseline distortions are typically 
among the first processing steps in the analysis of raw NMR 
spectra. A phase corrected spectrum has the real spectrum 
in absorption mode and the imaginary spectrum in dispersion 
mode. Baseline corrected real spectra have all regions not con-
taining signals close to zero amplitude, within the noise level. 
Carrying out these corrections is important not only to obtain 
better looking spectra that are easier to analyze, but also to 
ensure correct results in applications such as e.g. quantifica-
tion. 

Both phase and baseline distortions are caused by physical 
limitations in the acquisition of the NMR data. We can split the 
main causes of phase distortions into two categories. First, 
we have differences between the reference phase and the 
receiver detector phase, related to signal propagation during 
the acquisition of the experiment (which depends for example 
on lengths and impedances of cables and coils). This yields a 
frequency independent contribution known as 0th order phase 
distortion. The second contribution is related to the fact that 
acquisition cannot start at time zero, because the magnetiza-
tion starts to precess during the radiofrequency pulse. This 
causes a frequency dependent phase distortion known as 
1st order phase distortion. Baseline distortions are caused, 
for example, by ring-down of probes and other electronic 
components, pulse breakthrough, or background signals ori-
ginating from various components in the probe and samples. 
Although both phase and baseline distortions are considerably 
less severe in modern spectrometers and consoles, a certain 
amount lies in inherent technical properties of NMR acquisition 
and cannot be prevented.

Automated approaches to replace manual corrections have 
been suggested as early as 1969,[1] with many others follo-
wing.[2-10] These approaches often correct phase and base-
line separately. However, since it is more difficult to correct 
the phase in spectra with baseline distortion, or to estimate 
the baseline in spectra with residual phase distortion, the sepa-
rate correction of phase and baseline often leads to inaccurate 
results. To overcome this limitation, Bruker has released in 
TopSpin 4.0.6 the command apbk, which performs simulta-
neous phase and baseline correction of X-nuclei spectra. For 
proton spectra, the automated correction is more challenging 



The deep neural network was trained using 100,000 artificially 
generated spectra. These synthetic spectra spread a base 
frequency range between 80 MHz and 800 MHz, and have 
features (e.g. line widths, multiplicities, and J-couplings) that 
match the typical values observed experimentally. Signal-
to-noise ratios of the synthetic spectra are between 10 and 
10,000. A baseline was added to each spectrum and used as 
target for supervised learning.

To test the method, we have used both experimental and syn-
thetic data. Experimental data is the target of our method, but 
it is only available in limited quantity and testing relies on the 
manual correction of phase and baseline distortions. Synthetic 
spectra, on the other hand, are available in large amounts, and 
the exact degree of baseline and phase distortions are known. 
The synthetic data might however not have all the features 
observed experimentally, and at times contain unrealistic 
baseline shape. The experimental test set contains 100 expe-
rimental spectra at base frequencies between 80 MHz and 
700 MHz. Thereof 22 were acquired using the Bruker Fourier 
80 spectrometer. The spectra have been manually phase and 
baseline corrected by Bruker NMR experts. The synthetic test 
set contains 500 spectra and has been generated in the same 
way as the training data, but with stronger baseline distortion 
to reduce the bias in the results.

To evaluate the quality of the phase and baseline corrections 
separately, we have defined custom phase and baseline 
scores. We assessed the phase correction by comparing the 
applied correction with the target phase at each peak posi-
tion. The phase score is then defined as the average of the 
absolute phase differences. For the baseline assessment, the 
spectrum is first corrected for the residual phase yielding a 
perfectly phased spectrum, which might however still contain 
a baseline contribution. The averaged absolute difference of 
that spectrum and the spectrum without baseline then yields 
the baseline score value. The baseline score is provided rela-
tive to the RMS noise. Thus, if the entire baseline is offset by 
one RMS noise, a baseline score of 1 is obtained. The base-
line score is calculated across the whole spectrum and thus 
measures the quality of the baseline correction also in signal 
regions, where finding the baseline is more challenging, but 
important to obtain accurate integrals. Examples of phase and 
baseline scores for spectra with different degrees of phase 
and baseline distortions are shown in Figure 1. 

Figure 4

Figure 1

Figure 1: Examples of baseline and phase scores. (a) Baseline scores for a synthetic 
spectrum with different degrees of baseline distortion. The spectrum has no phase 
distortion.  (b) Phase scores obtained with manual phase correction performed by 
three NMR experts on the same spectrum.



While the examples in Figure 2 give a good visual represen-
tation of the performance of apbk and apk / abs,  for a more 
comprehensive comparison we have evaluated the results 
obtained on 500 synthetic and 100 experimental 1H spectra 
using the phase and baseline scores. To better interpret the 
results we have first estimated the typical accuracy obtained 
with manual phase correction. We have done this by distribu-
ting 35 synthetic NMR spectra with known phase distortion to 
8 of our internal NMR experts for manual correction. Examples 
of different manual corrections and the corresponding phase 
scores are given in Figure 1b. We found that the average 
phase score obtained by the experts for spectra with signal-to-
noise > 1,000 is 0.55°, which we will consider in the following 
as representative of the average manual phase correction. 

The comparison of the results obtained with apbk and with 
apk / abs on 500 synthetic spectra is shown in Figure 3. The 
baseline scores in Figure 3a indicate that apbk provides better 
baseline correction. The median baseline score achieved by 
apbk is 0.27 compared to 1.29 for apk / abs. Both first and third 
quartiles are lower for apbk (0.14 and 0.81 for apbk and  0.35 
and 7.7 for apk / abs). The phase scores are given in Figure 3b. 
The median phase score of 0.19° for apbk compared to 0.66° 
for apk / abs confirms improved phase correction capabilities 
of apbk. Both first and third quartiles are lower for apbk (0.10° 
and 0.48°) compared to apk / abs (0.26° and 3.8°). We con-
clude that apbk performs better on the synthetic data set than 

Figure 2Results and discussion

Figure 2 compares the results of the new method (apbk) to 
the commands previously implemented in TopSpin for phase 
and baseline correction (apk and abs, respectively) on three 
experimental spectra. The new method provides a better cor-
rection of both phase and baseline distortions: the improve-
ment in baseline correction can be seen in signal free regions, 
where apbk provides a flat spectrum, while the results by apk 
/ abs show wiggles. The baseline correction by apbk is also 
better at the edges of the spectra, where apk / abs sometimes 
fails to correct the so-called smiles, a digital filter artifact. An 
improvement in phase correction can be seen by more sym-
metric lines compared to the slightly asymmetric lines in the 
spectra processed by apk / abs. 

Figure 2

Figure 2. Examples of three experimental spectra with phase and baseline 
distortions corrected using apbk (blue) and apk / abs (red).

Figure 3

Figure 3. Baseline (a) and phase (b) scores obtained correcting phase and 
baseline distortions of 500 synthetic 1H NMR spectra using apk / abs (left 
column) and apbk (right column). The box plot vertically centered in each of 
the plots shows the quartiles extended with 1.5 interquartile ranges on either 
side. Data points that fall outside that range are indicated by diamonds.



apk / abs, both for baseline and phase correction. Note that, 
due to the way the synthetic data was created, some of the 
baseline distortions contained in this test set are larger than 
the typical baseline distortions observed experimentally. As a 
consequence, this result might not be representative of the 
accuracy obtained experimentally, but it still shows the higher 
robustness of apbk.

To further compare the performance of the two methods, we 
have performed the same test on 100 experimental 1H spec-
tra. The results are shown in Figure 4. The baseline scores in 
Figure 4a have a median of 0.51 for apbk and 0.64 for apk / 
abs. First and third quartiles are 0.26 and 1.3 for apbk and 0.28 
and 2.6 for apk / abs. Analogously to what we found for the syn-
thetic datasets, apbk provides a better baseline correction than 
apk / abs. It shows a slightly lower median value and more con-
sistent results across the dataset, indicated by a significantly 
lower 3rd quartile. The phase scores are provided in Figure 4b. 
The median is 0.31° for apbk and 0.55° for apk / abs, while first 
and third quartiles are 0.17° and 0.64° for apbk and 0.24° and 
1.2° for apk / abs, respectively. The median phase score of the 
new method is far below the average accuracy achieved by the 
experts (0.55°), and the third quartile is just above this value. 
This indicates that apbk achieves human level quality results 
on a large fraction of the experimental spectra.

Figure 4
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Figure 4

Figure 4. Baseline (a) and phase (b) scores obtained correcting phase and 
baseline distortions of 100 experimental 1H NMR spectra using apk / abs (left 
column) and apbk (right column). The box plot vertically centered in each of 
the plots shows the quartiles extended with 1.5 interquartile ranges on either 
side. Data points that fall outside that range are indicated by diamonds.

In Figure 5, we compare the results of apbk on low-field (80 
MHz) with those on high-field (>80 MHz) spectra. The experi-
mental dataset is the same that was used to create Figure 4. 
The baseline scores obtained with apbk are 0.89 and 0.42 for 
low- and high-field spectra respectively (Figure 5a), compared 
to 2.0 and 0.57 obtained with apk / abs. The new method per-
forms better both on low- and high-field data, but the quality 
gain is especially evident on the data acquired using the Fourier 
80 spectrometer. The phase scores shown in Figure 5b have 
a median of 0.36° and 0.25° for low- and high-field spectra 
corrected by apbk and 1.2° and 0.41° for apk / abs. This is in 
line with what we have observed for baseline correction and 
shows that apbk performs generally better for both low- and 
high-fields spectra.

Figure 5

Figure 5. Baseline (a) and phase (b) scores obtained on high-field (blue) and 
low-field (orange) 1H NMR spectra. The corrections were carried out using apk 
/ abs (left column) and apbk (right column), on the 100 experimental spectra 
shown in Figure 4. 



Conclusions

We have introduced a deep learning-based method for simul-
taneous phase and baseline correction of 1D 1H spectra. The 
method uses a deep neural network to estimate the baseline 
together with a classical algorithm to determine the phase 
correction. The new method is fully automated and does not 
require any user input. It is available as TopSpin command 
apbk starting from TopSpin 4.1.3.

Comparison on synthetic and experimental spectra show 
significantly better performance of apbk compared to pre-
viously available TopSpin commands for phase and baseline 
corrections (apk / abs). In particular, apbk achieves human-
level quality results on the phase correction of 100 expe-
rimental NMR spectra. We also find that apbk performs 
consistently better both for low- and high-field spectra, pro-
viding a more robust phase and baseline correction method 
that is suited both for the new Fourier 80 and high-field 
Bruker spectrometers.

Practical tips

•  Use the commands apbk -bo and apbk -po to correct 
respectively only baseline and phase.

•   To obtain the best results for both phase and baseline cor-
rections, you can define your signal region manually and 
then use the command apbk -intrng -n.

•  You can significantly reduce baseline distortions and 
remove 1st order phase distortions acquiring your spec-
trum using the digitation mode baseopt. 

•  You restrict the phase correction to 0th order only by using 
the command apbk -apk0.

•  The deep learning algorithm described in this paper will 
not run by default on 1H spectra that were acquired using 
pulse sequences with solvent suppression (the command 
falls back to apk / abs). If you want to force the use of 
the machine learning algorithm on these datasets use the 
command apbk -f.

•   You can find a description of all the options available for 
the apbk command in the TopSpin processing manual.[21]
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