Automated MALDI MRMS and NMR for biomarker based determination of diabetes during pregnancy

ASMS 2018, TP 472

Franklin E. Leach III¹, <u>Christopher J</u> <u>Thompson²</u>, Jeremy J Wolff², Jacquelyn Welko¹, Anushka Chelliah³, Maureen Keller-Wood³, Gary Kruppa², Arthur S **Edison**¹

¹University of Georgia, Athens, GA; ²Bruker Daltonics Inc., Billerica, MA; ³University of Florida, Gainesville, FL

Introduction

Mass spectrometry has increasingly been applied in the clinical setting due to the high and specific information content provided to researchers that enables a positive effect on patient outcomes. A different approach that eliminates the majority of sample preparation is MALDI-MS. Beyond mixing with a suitable ionization matrix, small amounts of sample $(\sim 1 \text{ uL})$ can be analyzed with no prior preparation or purification after clinical collection and in a high throughput fashion via MALDI automation

Sample Prep

Serum and urine were collected for clinical patients and stored at -80C. After thawing at 4C, samples were mixed 1:1 with DHB matrix and 1 μ L spotted onto a 384 sample AnchorChip target. No additional preparatory steps were required before mass spectrometry analysis.

(mass increases of 2H) resolving power ~325,000 required to make the split indicated in the inset.

MS Method

- Urine and serum samples were analyzed on a Bruker solariX XR at either 9.4 T or 12 T using MALDI. For urine samples, a 4 M transient with a low mass of m/z 75 was acquired.
- 12 scans were summed, leading to an average of ~40 seconds to analyze each spot.
- In selected cases (sp. serum), 2ω and AMP were employed to increase RP.

Data Analysis

• Data Analysis was performed in DA 5.0 and Metaboscape 3.0 for multivariate analysis of large sample sets.

Results

- For example in serum, we have been able to identify molecular compositions that correspond to over 100 lipid species with a mass error less than 250 ppb shown in Figure 1 (left).
- Due to the ionization mechanism during MALDI, most analytes are observed as singly charged species.
- Seen in Figure 1 (right), a mass resolving power of approximately 325,000 is required to resolve the A+2 peak of a preceding phosphocholine/ phosphoethanlolamine (PC/PE) lipid species from the A or monoisotopic peak of the following PC/PE with one less double bond.
- For urine, the MALDI automation approach has resulted in the ability to directly measure the chemical complexity of over 300 clinical urine samples plus internal/external controls and blanks (480 total spots) in less than 6 hours.
- A typical spectrum is shown in Figure 2 and demonstrates the molecular complexity of this biofluid. Shown in the Figure 2 inset is a 0.10 Th wide excerpt of the spectrum illustrating the need for the increased mass resolving power.
- Detailed analysis of this large sample set was performed within Metaboscape 3.0, using the T-Rex-2D algorithm. Annotation was done with SF and matching to the urine HMDB (http://www.hmdb.ca/).
- A key feature of the analysis is the identification of patients with elevated urine glucose levels shown in Figure 3.

~ su	cket Statistics	0 è Box Plot	«S Bucket Cor	relation MS/N	tS Bucket M	latches
x10	8-1					
1.2	2-	MALDE PCP.	12_4			
10	-					
	1					
0.8	-					
	1			0	0/0 30 3	
0.6	-			(constant)	For all	
	1					
0.4						
	124					
	1					
0.3						
0.3	1 1 1 1	•MAL	DLPCP_132_5			
0.3	1 1 1 1	9 _{M4}	DLPCP_132_5	00.00	0.0.00	
0.0		MALDEPO	DLPCP_132_5		ALDI PCP	83 °
0.3		°MAL MALDE PO	DUPCP_132.5		2000 PCP	83 N
0.3 0.0 (1)(1)	cket Table	°MAL MALDIPI	DUPCP_132,5 P_123 000 P_123 M440	1000 1000 1000 1000	1.0.0.0.	83 N
0.0 0.0 (1919)	cket Table	9 MAL MALDLPI	DL.PCP_132_5 9_12_5 0 040 1111111111	۵۳۷۶ (ppm)	mSigma	Molec
0.3 0.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		MALDUP MALDUP Mareas. 460,14922	DLPCP_132_5	۵۳/2 (ppm) -0.234	mSigma 79.9	Molec CapHg
0.1 0.0 (1) (1) 28 29 30		MALD P. MALD P. M meas. 460,14922 337,04222 282,09765	LD(.PCP_132.5 P_12.5 % Auto P_12.5	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	mSigma 79.9 54.0	Molec CuH CuH
0.3 0.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		Male Male Male Mares. 460.14922 337.04922 282.09407	D(PCP_132.5 P_32.3 MAAD P_32.3 MAAD Am/z (mDa) -0.113 0.062 0.062 0.073	0 0 0 0 (PCP 1871 h rtrrrrr 0.234 0.152 0.152	mSigma 79.9 54.0 16.9	Molec CarH CarH

Fig. 3) The bucket at m/z 203.05261 was detected as [M+Na]⁺ and assigned as D-Glucose (49 ppb). Bucket statistics for this metabolite shows that high intensities of D-Glucose can only be detected in samples of diabetic patients.

Conclusions

- minimal sample prep.

Automated MALDI MRMS provides the opportunity to obtain complementary information that support NMR findings on large clinical sample sets with

MetaboScape 3.0 enabled processing of MALDI-MRMS data facilitating this higher throughput profiling workflow.

Future work will focus on further refining the approach by incorporating isotopic fine structure and MS/MS to increase confidence in the assignment of composition and structure and to correlate MS and NMR results.

Metabolomics