Development of proteomic-biomarker landscape of AY9944-treated mouse brain tissues mimicking Smith-Lemli-**Opitz syndrome (SLOS) by using DIA-PASEF and DIA-FAIMS mass spectrometry**

Goal: Comparison of two very recent DIA mass spectrometry techniques - DIA-PASEF & DIA-FAIMS - in analyzing proteomic biomarkers related to the compound AY9944-treated mouse tissues mimicking Smith-Lemli-Opitz syndrome (SLOS).

SLOS: significant unmet need

- > A Rare disease An autosomal recessive inherited disorders with an incidence of 1 in 10,000–70,000 and a carrier frequency as high as **1** in **30**, and is caused by 7-dehydrocholesterol reductase (DHCR7) deficiency in cholesterol biosynthesis pathway
- > Hypomyelination is one of hallmarks-CNS defects in white matter, often involving corpus callosum absence or hypoplasia and reported to involve absence of myelin and demyelination > Pathogenesis – Multiple congenital malformation, mental retardation with behavioral phenotype
- > **Biological target** Lost of function of DHCR7 enzyme activity
- > Biochemical biomarkers- Accumulation of 7DHC (2.7~470 ug/ml; 10~2000-fold normal) and a deficiency of endogenous cholesterol

Fig. 1. Experimental workflow

Fig. 2. (left-side) QC (sample pool) performances are satisfactory. (right-side) Ctrl- and treated-samples of 21- and 35-days are well segregated in 2D PCA plot.

Fig. 3. (left-side) PLS (partial least square regression) for biomarker selection of Thermo Exploris480 mass spectrometer acquired samples. Component 1: 21-days vs. 35-days; Component 2: Treated vs. Ctrl. (right-side) Top 10 proteins in component 2

Fig. 4. (top) t test on differential proteins. (bottom) Top canonical pathways derived from IPA (Integrated Pathway Analysis) of significant proteins from Exploris480 acquisition of 21-days samples

Mahmud Hossain¹, Maria Stella Ritorto¹, Lin An¹, Tracie Treleaven², Elizabeth Gordon³, Diego M Assis³, Matthew Willetts³, and Bailin Zhang¹ ¹Disease Profiling & Functional Genomics, PMCB, Sanofi, ²Neuroinflammation & MS, Sanofi, Framingham, USA, ³Bruker Scientific LLC, Billerica, USA

	p-value		Overlap	
I	5.89E-07	5.1 %	16/314	
	9.21E-05	12.2 %	5/41	
	2.18E-04	10.2 %	5/49	
	2.95E-04	13.8 %	4/29	
	3.67E-04	23.1 %	3/13	
1 2 3 4 5 6 7 8 9	>			

Fig. 5. (left-side) PLS (partial least square regression) for biomarker selection of Bruker timsTOF Pro mass spectrometer acquired samples. Component 1: 21-days vs. 35-days; Component 2: Treated vs. Ctrl. (right-side) Top 10 proteins in component 2

Fig. 6. (top) t test on differential proteins. (bottom) Top canonical pathways derived from IPA (Integrated Pathway Analysis) of significant proteins from timsTOF Pro acquisition of 21-days samples

C
A total of 6,811 and 5,516 unique prote LC/Bruker timsTOF Pro MS) and DIA-F Exploris480 MS), respectively.
Comparing the AY9944-treated sample expressed proteins with a p<0.05 (an o samples, respectively, in DIA-FAIMS st of 215 proteins were identified from 21- (p<0.05) from DIA-PASEF study.
Top canonical pathways related to different Superpathway of Cholesterol Biosynthe and Cholesterol Biosynthesis I which a
Overall, DIA-PASEF data provides bett
ACK

Matt Willetts, Bruker Scientific LLC, Billerica, MA 01821.

Mom3 vs Mom4 (35-days)

	p-\	value	Overlap	
_	•	9.04E-11	28.6 %	14/49
—		2.40E-08	10.0 %	28/281
—		1.40E-06	27.6 %	8/29
-		2.68E-06	8.3 %	26/314
-		2.37E-05	38.5 %	5/13
	123456789 >			

CONCLUSIONS

eins have been identified from DIA-PASEF (Bruker nanoElute AIMS methods (Waters nanoAcquity UPLC/Thermo

es versus control, a total of 204 and 460 differentially overlap of 68 proteins) were identified from 21- and 35-days tudy. On the other hand, 511 and 512 proteins with an overlap - and 35-days samples, respectively, with a significant p value

erentially expressed proteins in both methodologies includes esis, Synaptogenesis Signaling Pathway, Spliceosome Cycle, re related to neurodegeneration.

ter performance compared to DIA-FAIMS in this study.

KNOWLEDGEMENT