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with regards to identification, quantitation and precision  be further explored in a standalone Spectronaut version.
(see Figure 2). The BPS pipeline could be further optimized

acquisition. BPS can provide quick visualization of both
injection level data and project level data, while detailed
neptide\spectrum level analysis can be explored in a
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Fig. 1: BPS allows for automated dia-PASEF data processing. In this example with 2 samples and 5 replicates, with a 45min LC gradient and
15min LC overhead, users can get fully processed data 2.5h faster or ~ 40% faster. With traditional processing pipelines, users need to wait
until all files have been acquired before transfter and subsequent processing. With BPS processing, run-by-run analysis is performed during the
acquisition queue, so users are able to evaluate the data quality for each injection. At the end of the acquisition queue, users can trigger a
multi-sample combine workflow, providing a project-wide view for further analysis.

© 2024 Bruker Innovation with Integrity



	Slide 1: Automated and faster library-free dia-PASEF analysis with a Spectronaut integrated workflow in ProteoScape

