Deep Learning Based Phase and Baseline Correction

C.S. Bolliger, S. Bruderer, F. Paruzzo Bruker Biospin

P-1193, ENC 2021

Machine Learning in NMR Spectroscopy

 The NMR community is increasingly using machine learning for the analysis of NMR spectra

Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy

Dicheng Chen#[a], Zi Wang#[a], Di Guo[b], Vladislav Orekhov[c], Xiaobo Qu*[a]

Accelerated Nuclear Magnetic Resonance Spectroscopy with Deep Learning Xiaobo Qu^{1*}, Yihui Huang¹, Hengfa Lu¹, Tianyu Qiu¹, Di Guo², Tatiana Agback³, Vladislav Orekhov⁴, Zhong Chen^{1*}

Reconstruction of spectra from truncated free induction decays by deep learning in proton magnetic resonance spectroscopy

Hyochul Lee, Hyeong Hun Lee, Hyeonjin Kim 💌

NMRNet: a deep learning approach to automated peak picking of protein NMR spectra.

Klukowski P¹, Augoff M¹, Zieba M¹, Drwal M¹, Gonczarek A^{2,3}, Walczak MJ^{4,3}.

- Bruker is part of it
 - Our latest application of deep learning has resulted in an improved phase and baseline correction algorithm for unsuppressed 1D ¹H NMR spectra

New apbk command for ¹H spectra

- We have developed a command for simultaneous phase and baseline correction of unsuppressed 1D 1H spectra
- The command is based on a deep learning algorithm for baseline detection

Innovation with Integrity

Methods

- Rough initial phase correction
- Neural network detects baseline
 - Convolutional recurrent network
 - Trained on synthetic data
- Iterative improvement of phase and baseline
 - Identify baseline regions
 - Perform phase fitting

• The neural network was trained using 100'000 artificially generated ¹H NMR spectra.

Training set parameters:

- 80 to 800 MHz base frequencies
 - 10 to 10'000 SiNo
 - Distribution of line widths, multiplicities, and J couplings that match typical experimental values
 - Random phase and baseline distortion

- The algorithm was tested against 100 experimental spectra that were phase and baseline corrected by NMR experts, and 1000 artificial spectra.
- It has shown overall higher accuracy than the commands for phase and baseline correction currently available in TopSpin (former apbk –f and apk + abs)
- It has also shown higher robustness with respect to the base frequency, providing excellent results also on data acquired with the Fourier 80

Results

- 2

- Baseline only - apbk result

Innovation with Integrity

Results

Phase score Corresponds to the average phase error of all peaks in a spectrum

Baseline score

Results

Corresponds to the z-score of the difference between real baseline and subtracted baseline with respect to the noise

Test on 100 experimental NMR spectra (80 MHz to 800 MHz)

Release in TopSpin 4.1.2

- The new apbk version optimized for unsuppressed ¹H spectra will be availabe with TopSpin 4.1.2
- Use this algorithm by typing *apbk* in the command line with ¹H 1D NMR dataset open
- Additional options

apbk –po: performs phase correction only apbk –bo: performs baseline correction only

apbk –intrng: uses user-defined integral regions

apbk –apk0: optimize only PHC0 during phase correction

Courious to learn more about it ?

Stay tuned for our webinar, coming on 11th May 4pm CET

MAY 11, 2021

Deep Learning Based Phase and Baseline Correction on NMR Spectra

Bruker's commitment in developing artificial intelligence based NMR applications has led to a new function available in TopSpin: the automatic simultaneous phase and baseline correction of 1H NMR spectra.

Innovation with Integrity