P-1242

Diversifying NMR Supersequences with New HSQC-based Modules

Jonathan RJ Yong^[1], Alexandar L Hansen^[2], Ēriks Kupče^[3], Tim DW Claridge^[1]

^[1]University of Oxford; ^[2]Campus Chemical Instrument Center; ^[3]Bruker UK

Summary

Slide 1: NOAH overview

- 2D NMR experiments ("modules") are combined into "supersequences" by removing relaxation delays, speeding data acquisition by up to 4×.
- Each module should only excite its share of magnetisation, e.g. ¹H-¹³C HSQC should only excite ¹³C-bound ¹H. "Standard" experiments must typically be modified to satisfy this.

Slide 2: Sensitivity-enhanced HSQC

- Adding a double spin echo ("ZIP element") at the start of the seHSQC lets it preserve ¹²C- or ¹⁴Nbound ¹H magnetisation for other modules.
- This new ¹H-¹³C seHSQC module provides 1.2-1.8× S/N gain vs the original HSQC module.
- The $^{1}H-^{15}N$ seHSQC gives 2.0–4.5× gains vs the HMQC, partly via collapse of f_1 multiplet structure.

Slide 3: HSQC-TOCSY and HSQC-COSY

- These preserve ¹²C-bound ¹H magnetisation, but also allow variable excitation of ¹³C-bound ¹H.
- The unexcited ¹³C-¹H magnetisation (plus any that recovers during FID) can then be used for a HSQC module, e.g. to extract multiplicities or ¹J_{CH}.
- HSQC-COSY avoids "relay peaks" present in HSQC-TOCSY, even when short mixing times are used.

Slide 1: NOAH overview

Modules are combined into supersequences

Many typical 2D experiments e.g. HMBC, HSQC, COSY, NOESY can be acquired "in parallel" using the NOAH technique (**N**MR by **O**rdered **A**cquisition using ¹**H**-detection). Each constituent experiment is called a "module".

Only one recovery delay (d_1) needed

Because d_1 is the longest part of the pulse sequence, the elision of multiple recovery delays leads to substantial time savings (up to 4× depending on the modules employed).

Conventional HMOC + HSOC + COSY

46 min 19 sec (2.51× longer)

Kupče, Ē.; Claridge, T. D. W. *Angew. Chem. Int. Ed.* **2017,** *5*6 (39), 11779–11783. Schulze-Sünninghausen, D.; Becker, J.; Luy, B. *J. Am. Chem. Soc.* **2014,** *13*6 (4), 1242–1245.

Resulting spectra are identical to standard 2Ds

Extra data processing consists merely of "splitting" the FIDs and is completely automated via AU programmes.

Modules excite ¹H magnetisation selectively

For example, the ¹³C HSQC module above only excites protons directly bound to ¹³C, leaving ¹²C-bound protons untouched.

P-1242

Diversifying NMR Supersequences with New HSQC-based Modules

Jonathan RJ Yong^[1], Alexandar L Hansen^[2], Ēriks Kupče^[3], Tim DW Claridge^[1]

^[1]University of Oxford; ^[2]Campus Chemical Instrument Center; ^[3]Bruker UK

Summary

Slide 1: NOAH overview

- 2D NMR experiments ("modules") are combined into "supersequences" by removing relaxation delays, speeding data acquisition by up to 4×.
- Each module should only excite its share of magnetisation, e.g. ¹H-¹³C HSQC should only excite ¹³C-bound ¹H. "Standard" experiments must typically be modified to satisfy this.

Slide 2: Sensitivity-enhanced HSQC

- Adding a double spin echo ("ZIP element") at the start of the seHSQC lets it preserve ¹²C- or ¹⁴Nbound ¹H magnetisation for other modules.
- This new ¹H-¹³C seHSQC module provides 1.2-1.8× S/N gain vs the original HSQC module.
- The ${}^{1}H{-}{}^{15}N$ seHSQC gives 2.0–4.5× gains vs the HMQC, partly via collapse of f_1 multiplet structure.

Slide 3: HSQC-TOCSY and HSQC-COSY

- These preserve ¹²C-bound ¹H magnetisation, but also allow variable excitation of ¹³C-bound ¹H.
- The unexcited ¹³C-¹H magnetisation (plus any that recovers during FID) can then be used for a HSQC module, e.g. to extract multiplicities or ¹J_{CH}.
- HSQC-COSY avoids "relay peaks" present in HSQC-TOCSY, even when short mixing times are used.

Palmer, A. G.; Cavanagh, J.; Wright, P. E.; Rance, M. *J. Magn. Reson.* **1991**, *93* (1), 151–170. Hansen, A. L., Brüschweiler, R. *et al.*, submitted for publication, **2021**.

Yong, J. R. J.; Hansen, A. L.; Kupče, Ē.; Claridge, T. D. W., submitted for publication, 2021.

The seHSQC provides substantial SNR gains versus existing NOAH modules

P-1242

Diversifying NMR Supersequences with New HSQC-based Modules

Jonathan RJ Yong^[1], Alexandar L Hansen^[2], Ēriks Kupče^[3], Tim DW Claridge^[1]

Slide 3: HSQC-TOCSY and HSQC-COSY

^[1]University of Oxford; ^[2]Campus Chemical Instrument Center; ^[3]Bruker UK

Summary

Becker, J.; Luy, B. *et al. J. Magn. Reson.* **2019,** *300,* 76–83. Gyöngyösi, T.; Timári, I.; Kövér, K. E. *et al. Anal. Chem.* **2021,** *93* (6), 3096–3102. Yong, J. R. J.; Hansen, A. L.; Kupče, Ē.; Claridge, T. D. W., submitted for publication, **2021**.

Modified INEPT delay Δ_E enables variable ¹³C-¹H excitation (as in ASAP-HSQC)

Aim: Increase variety of ¹³C–¹H correlations available via NOAH.

Magnetisation can be partitioned between multiple HSQC-based modules in the same supersequence. Relaxation during FID acquisition, or isotropic mixing between modules, can also increases the available signal.

