Analytical SEM Solutions for Geology

Exploring Microstructure and Chemistry in Minerals using EBSD and CL

Bruker Nano Analytics, Berlin, Germany Webinar, September 10th, 2019

Presenters

• Toon Coenen, PhD

Product Manager, DELMIC, Delft, NL

• Laurie Palasse, PhD

Senior Application Scientist, Bruker Nano Analytics, Berlin, DE

• Sten Sturefelt

Application Specialist, Hitachi High-Technologies Europe, Stockholm, SE

Analytical SEM Solutions for Geology Overview of part 2

I – Cathodoluminescence for Geology

- CL process in rocks
- CL imaging of minerals

II – Advanced EBSD solution of mineralogical samples

- EBSD technique review
- Phase ID and discrimination with simultaneous EBSD/EDS measurement
- Advanced imaging with built-in ARGUS system

III – Sample preparation of minerals

- Broad Ion Beam Milling vs mechanical polishing
- Application examples

Q&A

Analytical SEM Solutions for Geology Part II

1 - Cathodoluminescence imaging for geology

Cathodoluminescence imaging for geology

Electron beam excitation and light

Cathodoluminescence process in rocks

For a crystalline material, electrons in that material can only occupy certain energy states. Typically, (almost) all electrons reside in the valence band

- Rocks are typically insulators with wide band gaps between 5 - 15 eV (DUV-EUV)
- In CL we measure in the 0.8 6 eV range
- Defect states play an important role

delmic

Defect emission in CL

SPARC Cathodoluminescence system

CL imaging modes

CL intensity mapping

- Measure CL intensity
- Short dwell times (10 100 µs) → video-rate imaging
- Coarse spectral filtering and RGB mapping

- Measure CL spectrum
- Longer dwell times (10 1000 ms)
- Hyperspectral imaging with high spectral resolution

CL systems

Jolt

Basic system for (RGB) intensity CL mapping

SPARC Compact

Compact CL system for high-performance (RGB) intensity CL mapping

SPARC Spectral

High-performance intensity mapping and spectroscopy

CL on quartz sandstone

T. Coenen, whitepaper (2016) ¹²

Combine CL and SEM data to reveal interesting sample features

Microcharacterization of Zircons: Imaging zonation

Zircon spectroscopy

- Map spectral distribution over large crystal
- Observe spectral differences between bands
- REE and intrinsic defect emission

Sample: Dr. Changfu Fan (Beijing Geonanalysis Co Ltd)

delmic

Zircon spectroscopy

- Identify different REE species based on 4f transition energies
- Very high sensitivity down to 10¹⁴ atoms/cm³

- Carbonate
- > Apatite
- > Monazite

Sapphires

Conclusions

- CL presents a fast and powerful technique for microanalysis of rocks
- With current sensitivity and precision novel applications are within reach
- New CL approaches and techniques can broaden scope

Analytical SEM Solutions for Geology Part II

2 – Advanced EBSD solution for geology

Advanced characterization of mineralogical samples outline

- EBSD setup
- Combined EBSD/EDS measurement
 - Advanced Phase Identification
 - Phase discrimination by EDS
- Advanced imaging with built-in ARGUS system
- Summary

Introduction Experimental setup

Introduction Combined EBSD/EDS measurement

Software features:

• One software platform to control both detectors and to perform all types of analysis possible

• Simultaneous EBSD/EDS acquisition of EBSP and full EDS spectrum

•Online/offline phase ID and discrimination between phases creating similar patterns

Hardware features:

Unique detector features for allowing data acquisition in optimized conditions:

- In-situ EBSD detector tilt
- VZ-adapter for EDS detector tilt

Introduction Measurement at short WD

Introduction Measurement at long WD

Advanced characterization of mineralogical samples outline

- EBSD setup
- Combined EBSD/EDS measurement
 - Advanced Phase Identification
 - Phase discrimination by EDS
- Advanced imaging with built-in ARGUS system
- Summary

Phase identification

Conventional phase ID > *before launching measurement* **keeps SEM busy**

- time consuming manual setup
- inaccurate:

based on BSE image – can miss phases

using manually defined threshold – not best fitting phases

Advanced phase ID > offline after measurement, SEM is free

- interactive (phase search, band detection, etc.)
- fast and automatic phase identification over thousands of candidates
- best fitting phase file is selected
- ultra fast reanalysis (>40 000 pps)

Advanced phase ID Setup

Sample: oceanic gabbro from IODP 304/305 Measurement type: Simultaneous EBSD/EDS EBSP resolution: 160x120 pixels Map size: 1000x750 points Pixel size: 1.66 microns

Acknowledgments to: Dr. Angela Halfpenny* Dr. Michael Verrall CSIRO, Perth, Australia *now at Central Washington University, WA, US

- Advanced phase ID: (Online)
- Acquire EDS spectrum and EBSP on selected point

- Advanced phase ID: (Online)
- 1. Acquire EDS spectrum and EBSP
- Search in database for candidate phases (Fe, O) – 289 entries
- Automatic/interactive band detection

- Advanced phase ID: (Online)
- 1. Acquire EDS spectrum and EBSP
- Search in database for candidate phases (Fe, O) – 289 entries
- Automatic/interactive band detection
- Software tries all 289 entries in ~10 sec
- Solutions are classified based on quality of fit
- Best fitting phase file added to phase list
- System ready for acquiring data

Advanced phase ID: (Offline) After data EBSD/EDS acquisition, repeat the same advanced phase ID procedure with the missing phases:

- Select one point from the map
- 2. Perform advanced phase ID

Advanced phase ID: (Offline) After data EBSD/EDS acquisition, repeat the same advanced phase ID procedure with the missing phases:

- Select one point from the map
- 2. Perform advanced phase ID
- 3. Ilmenite: SG 148
- 4. Reindex map in 50 sec

- Advanced phase ID: (Offline)
- 1. Magnetite: SG 227
- 2. Ilmenite: SG 148
- Repeat procedure for the other unknown phases...

Final EBSD data:

- 1. Magnetite: SG 227
- 2. Ilmenite: SG 148
- 3. Pyrrhotite: SG 194
- 4. Apatite: SG 176
- 5. Quartz: SG 152
- 6. Augite: SG 15
- 7. Anorthite (Na): SG 2
- 8. Hastingsite: SG 12
- 9. Clinohypersthene: SG 14
- 10. Clinochlore: SG 5
Advanced characterization of mineralogical samples outline

- EBSD setup
- Combined EBSD/EDS measurement
 - Advanced Phase Identification
 - Phase discrimination by EDS
- Advanced imaging with built-in ARGUS system
- Summary

Phase discrimination by EDS EBSD only

Phase discrimination by EDS with EDS quantification assistance

Mylonitic Iherzolite (Lers, France) EBSD Phase map

EBSD Phase map Hit rate 85 % Olivine Opx Cpx Spinel

Plagioclase!

Calcium carbonates Phase discrimination with EBSD/EDS

EBSD can distinguish chemically identical phases such as calcite and aragonite

Investigating thermomechanical processes Mafic boudins in granulite facies Lindas Nappe, SW Norway

Sample courtesy and study: Dr. D.Spengler, Stuttgart University, Germany

Investigating thermomechanical processes EDS mixed element map

Investigating thermomechanical processes EDS Autophase

Investigating thermomechanical processes EBSD Phase map

EBSD Phase map

Magnetite Ilmenite K-Feldpsar Plagioclase Garnet CPX OPX Amphibole

Investigating thermomechanical processes Strain localisation map on garnet

Misorientation map porphyroclastic garnet

EBSD/EDS analysis on metals and minerals: CB carbonaceous chondrite Gujba 3D µ-XRF, 3D EDS & EBSD

EBSD analysis of impactite example on shocked quartz

Shocked quartz in impactite (Yaxcopoil sample)

SE image of ballen quartz

Orientation contrast image (FSE)

EBSD analysis of impactite example on shocked quartz

Shocked quartz in impactite (Yaxcopoil sample)

EBSD analysis of impactite example on shocked quartz

Shocked quartz in impactite (Yaxcopoil sample)

Advanced characterization of mineralogical samples outline

- EBSD setup
- Combined EBSD/EDS measurement
 - Advanced Phase Identification
 - Phase discrimination by EDS
- Advanced imaging with built-in ARGUS system
- Summary

FSE/BSE imaging system How does it work?

- ARGUS is a **build-in** BSE & FSE detector: no loss of signal, high signal/noise ratio
- Each diode captures a similar amount of noisy backscattered electrons and a different part of the diffracted backscattered electrons, i.e. EBSD signal.
- Signal (e⁻ counts) is transferred using a separate channel for each diode. A color is assigned to each diode.
- When scanning, for each pixel the system will obtain three numbers which will be transformed into three RGB levels.
- Then the three signals/RGB levels are mixed

Following slides are examples of colour-coded FSE images on minerals

Color-coded orientation contrast Tectonically deformed Quartz

Color-coded orientation contrast

C-coated sample (quartz) and low vacuum mode examples

Grayscale orientation contrast Protomylonitic Iherzolite

Color-coded orientation contrast Protomylonitic Iherzolite

Color-coded orientation contrast Protomylonitic Iherzolite

Color-coded orientation contrast Protomylonitic Iherzolite – zoom on ultrafine grains

Colour-coded orientation imaging shocked minerals - Quartz

grayscale orientation contrast imaging vs color-coded

Advanced characterization of mineralogical samples Summary

- Unique hardware features
 - EBSD & EDS detector tilt and "slim" design for better data
 - built-in ARGUS[™] FSE/BSE imaging system
 - Optimized EBSD/EDS integration
 - Advanced phase ID offline & online
 - Phase discrimination by EDS quantification assistance during EBSD re-indexing
- Ultrafast re-indexing (optimizing SEM time)

Analytical SEM Solutions for Geology Part II

Chapter 3 – Sample preparation for SEM & EBSD

Advanced Sample Preparation for SEM & EBSD

Sten Sturefelt, Hitachi High-Technologies Webinar, 10th of September 2019

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Advanced Sample preparation for SEM & EBSD

Broad Ion Beam Milling

Creating a clean and flat sample surface for SEM and EBSD studies

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Cut into proper size, polished with grinding paper or paste

Is it ready for high resolution studies?

Damages from Cutting and Polishing

Hitachi High-Tech

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Damages from Polishing - Example

Steel polished with 9 µm diamond

Hitachi High-Tech

Damages from Polishing - Example

Steel polished with 3 µm diamond

Hitachi High-Tech

Damages from Polishing - Example

Steel polished with 1 µm diamond

Hitachi High-Tech

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Broad Ion Beam Milling (BIB)

BIB ≠ FIB

Ablation via momentum transfer from Argon lons

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Broad Ion Beam Milling – Reasons Why

- Traditional polishing or cutting techniques of hard or ductile, soft and composite materials introduce significant lateral sheer forces
- The result is scratches, smearing, delamination or other damage
- Ion Milling eliminates oxide films or contamination and will enhance crystal orientation contrast
- Ion Milling removes artifacts resulting in a smooth, polished surface ideal for EDX and EBSD analysis
- Prepare a "stress-free" cross-section of complex compound materials

Broad Ion Beam Milling – Flat Milling & Cross-sections

Hitachi IM4000+

Hitachi IM5000 (ArBlade)

Hitachi High-Tech

Flat Milling Set-up

Cross-section Set-up

Hitachi High-Tech

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.
Advanced Sample preparation for SEM & EBSD HITACHI Inspire the Next

Ion Milling of Flat Surfaces

Hitachi High-Tech

Flat milling method: Shifts the beam over the surface to uniformly sputteretch the sample with Argon ions

The milling angle strongly influences the result

Angles >15° ⇒ Selective etching (chemistry, orientation)

Steel polished with 1 um diamond. Ion polished at 60 degrees at 6 kV during 10 minutes.

HITACHI

Angles >15° ⇒ Selective etching (chemistry, orientation)

Angles <10° ⇒ Reduces topography

Steel polished with 1 um diamond. Ion polished at 10 degrees at 6 kV during 10 minutes.

HITACHI

Flat Milling - Geological Application

Pegmatit after Flat Milling

Sample courtesy of Prof. Claudia Trepmann, Ludwig Maximilian University, Munich

Ion Beam Milling and Incidents Angles – Cross-sections

Hitachi High-Tech

Angles >15° ⇒ Selective etching (chemistry, orientation)

Angles <10° ⇒ Reduces topography

At 0° using a mask ⇒ Cross-section

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Advanced Sample preparation for SEM & EBSD HITACHI Inspire the Next

Ion Milling Cross-sections

Cross-section Milling: Sputter-etch the sample with Ar ions partly covered with a mask to gradually produce a sharp edge

Advanced Sample preparation for SEM & EBSD HITACHI Inspire the Next

Ion Milling Cross-sections

Resin embedding can be omitted, carbon glue can be used instead. No pre-polishing needed.

Advanced Sample preparation for SEM & EBSD

Ion milled section

HITACHI

Inspire the Next

Porous Zirkonium shell with active catalyst particle Milling condition: Ion beam voltage 6 kV, time 1-2 hours

Hitachi High-Tech

Copyright ©2014 Hitachi High-Technologies Corporation All Rights Reserved.

Ion Milling Cross-sections – Application Example

Hitachi High-Tech

HITACHI

Inspire the Next

Ion Milling Cross-sections – Application Example

Shell from the North Sea (calcite)

EBSD of biominerals without coating

Right: diffraction band contrast image and IPF Y map (calcite)

Summary

- Broad Ion Beam (BIB) Milling is ideal for creating a flat and smooth sample surface for both EDX and EBSD analysis in high resolution.
- BIB also eliminates oxide films or contamination and will enhance crystal orientation contrast.
- BIB can be used on hard, soft and composite materials.
- Flat Milling is a quick method for embedded samples and can be adjusted for selective etching.
- Cross-section Milling is ideal for flat samples and thin layer studies. No resin embedding or pre-polishing needed.

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*. More Information

For more information, please contact us:

coenen@delmic.com

Laurie.Palasse@bruker.com

sten.sturefelt.ss@hitachi-hightech.com

www.bruker.com/quantax-ebsd

Innovation with Integrity

delmic

HITACHI Inspire the Next

Copyright © Bruker Corporation. All rights reserved. www.bruker.com