The Need for Ultra High Field Magnetic Resonance Imaging

Reference List

Bagga P, Pickup S, Flament J, Detre J, Hariharan H, Reddy R. Mapping astroglial glutamine synthetase activity in vivo in a preclinical model of epilepsy using glutamate-weighted CEST (GluCEST) MRI. ISMRM 2019 3121
Chung JJ, Choi W, Jin T, Lee JH, Kim S-G. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T. NMR in Biomedicine. 2017;30:e3740. doi.org/10.1002/nbm.3740
Chung JJ, Jin T, Lee JH, Kim SG. Chemical exchange saturation transfer imaging of phosphocreatine in the muscle. Magnetic Resonance in Medicine 2019, 81(6):3476-3487. doi: 10.1002/mrm.27655
De Feyter H, Behar K, Corbin Z, Fulbright R, Brown P, McIntyre S, Nixon T, Rothman D, de Graaf R. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci. Adv. 2018; 4. doi: 10.1126/sciadv.aat7314
Deutsches Krebsforschungszentrum:
Deutsches Krebsforschungszentrum:
Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage. 2012;62(2):1241-1248. doi:10.1016/j.neuroimage.2011.10.065.
Duyn J. MR Susceptibility Imaging. Journal of magnetic resonance (San Diego, Calif : 1997). 2013;229:198-207. doi:10.1016/j.jmr.2012.11.013.
Han SH, Son JP, Cho HJ, Park JY, Kim SG. Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla. Magnetic Resonance in Medicine. 2018; 1-10. doi: 10.1002/mrm.27457
Hsieh M-C, Tsai C-Y, Liao M-C, Yang J-L, Su C-H, Chen J-H. Quantitative Susceptibility Mapping-Based Microscopy of Magnetic Resonance Venography (QSM-mMRV) for In Vivo Morphologically and Functionally Assessing Cerebromicrovasculature in Rat Stroke Model. Jiang Q, ed. PLoS ONE. 2016;11(3):e0149602. doi:10.1371/journal.pone.0149602.
Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. NeuroImage. 2019;195: 203-214. doi.org/10.1016/j.neuroimage.2019.03.063
Kalthoff D, Hoehn H. Functional Connectivity MRI of the Rat Brain. Bruker Application Note 2012 Functional_Connectivity.pdf
Metabolic Imaging in Neurodegenerative Disease using CEST MRI | Bruker: www.bruker.com/service/education-training/webinars/pci-webinars
Mlynárik V, Cudalbu C, Xin L, Gruetter R. 1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile. J Magn Reson. 2008; 194: 163–168. doi: 10.1016/j.jmr.2008.06.019
MRI CryoProbes | Bruker
New insights into brain function with molecular and functional MRI of the rodent brain at ultra-high fields | Bruker:
Niendorf T, Pohlmann A, Reimann HM, et al. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Frontiers in Pharmacology. 2015;6:255. doi:10.3389/fphar.2015.00255.
Nowogrodzki A. The world’s strongest MRI machines are pushing human imaging to new limits. Nature 563, 24-26 (2018), doi: 10.1038/d41586-018-07182-7

Öz G, Tkáč I, Uğurbil K. Animal models and high field imaging and spectroscopy. Dialogues in Clinical Neuroscience. 2013;15(3):263-278.
Ong HH, Webb CD, Gruen ML, Hasty AH, Gore JC, Welch EB. Fat-water MRI of a diet-induced obesity mouse model at 15.2T. Journal of Medical Imaging. 2016;3(2):026002. doi:10.1117/1.JMI.3.2.026002.
Overview Aeon 1GHz | Bruker: www.bruker.com/products/mr/nmr/magnets/magnets/aeon-1ghz/overview
Overview BioSpec MRI - Multi Purpose High Field MRI/MRS Research Systems | Bruker: www.bruker.com/products/mr/preclinical-mri/biospec/overview
Pépin J, Francelle L, Carrillo-de Sauvage M-A, de Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease. Neuroimage. 2016; 139: 53–64. doi: 10.1016/j.neuroimage.2016.06.023
Petiet A, Aigrot M-S, Stankoff B. Gray and White Matter Demyelination and Remyelination Detected with Multimodal Quantitative MRI Analysis at 11.7T in a Chronic Mouse Model of Multiple Sclerosis. Frontiers in Neuroscience. 2016;10:491. doi:10.3389/fnins.2016.00491.
Pohmann, R., Speck, O. and Scheffler, K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn. Reson. Med., 2016; 75: 801-809. doi:10.1002/mrm.25677
Polimeni, J. and Uludağ, K., Neuroimaging with ultra-high field MRI: Present and future. NeuroImage, 2018; 168: 1-6. doi: 10.1016/j.neuroimage.2018.01.072
Roussel T, Frydman L, Le Bihan D, Ciobanu L. Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Scientific Reports 9(1):4423. doi.org/10.1038/s41598-019-40986-9 1
Seehafer JU, Hoehn H. Insights in the rat brain by high resolution BOLD functional MRI. Bruker Application Note 2011
Shemesh N, Rosenberg JT, Dumez J-N, Muniz JA, Grant SC, Frydman L. Metabolic properties in stroked rats revealed by relaxation-enhanced magnetic resonance spectroscopy at ultrahigh fields. Nat Commun. 2014; 5: 4958. doi: 10.1038/ncomms5958
Shemesh N, Rosenberg JT, Dumez J-N, Grant SC, Frydman L. Metabolic T1 dynamics and longitudinal relaxation enhancement in vivo at ultrahigh magnetic fields on ischemia. Journal of Cerebral Blood Flow & Metabolism. 2014;34(11):1810-1817. doi:10.1038/jcbfm.2014.149.
Thulborn KR, Lu A, Atkinson IC, Damen F, Villano J. Quantitative Sodium MR Imaging and Sodium Bioscales for the Management of Brain Tumors. Neuroimaging clinics of North America. 2009;19(4):615-624. doi:10.1016/j.nic.2009.09.001.
Uludağ, K., and Blinder P., Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage, 2018; 168 279-295. doi: 10.1016/j.neuroimage.2017.02.063.
Using High Fields to Combat Ischemic Stroke with Cell Therapy | Bruker:
Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, Mu L, Nanz D, Tuura R, Delso G. An overview of CEST MRI for non-MR physicists. 2016; EJNMMI Physics 3:19