Combining Time Series and Feature Correlation Analysis Linked Two Biologically Important Pathways in CD8+ T-cell Activation

ASMS 2021 – FP 527

<u>Sofie Weinkouff¹</u>, Joerg M. Buescher², Aiko Barsch¹, Nikolas Kessler¹

¹Bruker Daltonics GmbH & Co. KG, Bremen, Germany ² Max Planck Institute of Immunobiology

and Epigenetics, Freiburg, Germany

Introduction

Metabolic processes are subject to constant dynamics. Therefore, the investigation of dynamic changes is of high importance in Lipidomics, Pharma Metabolomics, and Analysis of metabolic dynamics Phenomics. enables, for example, the detection of relevant markers for immune cells responses to pathogen otherwise remain that would attacks undiscovered. Cytotoxic (CD8+) T-cells play a in immune response. During role central activation, T-cells undergo a complex transition and major metabolic changes are triggered.

To better understand the dynamics in CD8+ T-cell detailed investigation of global activation, metabolic changes paired with metabolite identification (ID) is required. Here, we combined metabolite ID by matching internal standards with time series and feature correlation analysis using interactive visualizations to detect relevant markers with similar molecular dynamics. This allowed us to ultimately connect two biologically important pathways in T-cell activation.

Methods

- Isolation of primary murine naive CD8+ Tcells from spleens and in vitro activation with cytokines.
- Samples were taken every 12 h until 96 h.
- LC-QTOF-MS acquisition on a Bruker Impact II system (QTOF-MS) with an Agilent 1290 II UHPLC.
- Data processing, metabolite ID, time series and correlation analysis with MetaboScape 2021b
- Internal MS/MS libraries and reference retention times of standards were matched in MetaboScape.

retention times to single standards enabled

Interactive time series plots were used to investigate changes in signal intensities

Fig. 1 Correlation of spermine and S-Adenosyl homocysteine signal intensities over time shows possible link between biological pathways in CD8+ T-cell activation.

For research use only. Not for use in Clinical diagnostic procedures.

Results and Discussion

A) Polyamine pathway time series

- MS/MS library search and comparison of the detection of **spermidine** and **spermine** as well as their precursor **arginine**.
- These showed that spermidine and spermine increased in peak intensity whereas their precursor arginine remained almost constant over time.

B) Correlation between spermine and SAH

Peak intensity-based similarity search of spermine using feature correlation in MetaboScape pointed to several features with similar dynamic changes.

- One of these features had been annotated as **S-adenosyl** homocysteine (SAH), which is related to S-Adenosyl methionine (SAM).
- SAM and its derivatives play important biological roles, for example, in RNA modification.

C) SAM pathway time series

- By searching the feature table explicitly for SAH derivates, SAM and 5'methylthioadenosine (MTA) could be annotated. These are directly involved in polyamine biosynthesis.
- Time series analysis of the 3 SAM related compounds differ strongly in signal intensities (data not shown), but relative intensities showed similar dynamic changes.
- Similar dynamic patterns of the 3 SAM derivates could be confirmed by three biological replicates separately.

D) Link between biological pathways

- series and correlation With time analysis we were able to identify initially unassigned metabolites that would otherwise have remained hidden.
- This enabled to establish a possible mechanistic link between immune cell function and RNA modification in CD8+ T-cell activation.

Summary

Combination of time series and feature correlation analysis linked polyamine pathway and S-adenosyl-methionine pathway in CD8+ T-cell activation.

References

1. Edwards-Hicks, J., Mitterer, M., Pearce, E. L. & Buescher, J. M. Metabolic dynamics of in vitro CD8+ T cell activation. Metabolites 11, 1–17 (2021).

Data availability

Download raw data here

Conclusions

- internal standards

- **RNA** modification

• Three members of the **polyamine** pathway could be identified with

The precursor arginine remained rather constant, whereas its intermediate spermidine and its product spermine increased in peak intensity over time

Feature correlation of spermine analysis pointed to metabolites of **S-adenosyl**methionine metabolism

In this way, time series and feature **correlation** analysis enabled to establish a possible mechanistic link between immune cell function and

Metabolomics