CCS-enabled drug metabolite profiling and characterization workflow for distinguishing drug metabolites

ASMS 2021 ThP 043

Xuejun Peng¹, <u>Lucy Woods²</u> ¹Bruker Scientific LLC, San Jose, CA; ²Bruker Scientific LLC, Billerica, MA

Introduction

Fast and accurate identification and characterization of drug metabolites play a critical role in preclinical and clinical development stages to assist lead compound structure optimization, screening drug candidates, and finding active or potentially toxic metabolites. In this work, a DDA-PASEF nontargeted LC-timsTOF Pro metabolomics workflow was conducted to profile and characterize drug metabolites. Metabolites were postulated by utilizing BioTransformer[1], a knowledge and machine learning based approach to predict small molecules metabolism. Metabolite structures were elucidated by *in-silico* fragmentation, MS/MS spectral library and comparison of acquired to reference or predicted CCS values using a novel CCS prediction algorithm. Together, each of these steps forms a fully integrated workflow that utilizes the four-dimensional data to ensure low level drug metabolites can be annotated

Methods

A time-series experiment was conducted by spiking human liver microsomes (Promega) and drugs of codeine, MDMA, fentanyl and tramadol (Sigma) into a pre-incubated NADPH regeneration system at 37°C, and aliquoting 100 μ L of reaction solution at 0, 5, 15, 30, 45, 60, 90 and 120 min. The reactions were stopped by adding cold acetonitrile. All samples were centrifuged at 12,000 rpm at 4°C for 10 min. The supernatant was transferred into insert sample vial and 5 μ L was injected (n=3) for each of the two biological replicates. Analysis was performed by Elute UHPLC timsTOF Pro (Bruker) with PASEF data acquisition and ESI positive mode. Data analysis was conducted in DataAnalysis 5.3 and MetaboScape 2022 (Bruker).

Results and Discussions

Fast PASEF MS/MS data acquisition

The parallel accumulation serial fragmentation (PASEF) capability in timsTOF Pro provides very fast MS/MS acquisition speed at full sensitivity following ion mobility separation to deeply profile low abundant metabolites using data dependent acquisition. Figure 1 demonstrates significant increase in number of MS/MS acquired for sample analysis under LC-timsTOF PASEF MS/MS experimental conditions.

EIC, EIM and CCS

The extracted ion chromatogram (EIC) and extracted ion mobilogram (EIM) of drugs and its measured CCS were processed and displayed in Figure 2 and Table 1.

Name	RT (min)	Trace [M+H]+	Mobility, 1/K0	Measured CCS [Å ²]	CCS [M+H] ⁺ , PubChem (DT)	ΔCCS (%) vs. PubChem (DT)	CCS by CCS-Predict Pro	ΔCCS (%) vs. CCS-Predict Pro
Codeine	1.0	EIM 300.1594±0.11 + All MS	0.819	171.4	168.5	-1.71	170.2	-0.71
MAMA	1.0	EIM 194.1176±0.11 + All MS	0.680	144.7	145.8	0.73	143.2	-1.05
Fantanyl	3.3	EIM 337.2274±0.11 + All MS	0.882	183.8	184.1	0.16	184.6	0.43
Tramadol	2.9	EIM 264.1958±0.11 + All MS	0.769	168.5	160.4	-5.05	162.6	0.90

Table 1. Results of drugs' CCS

Data processing in MetaboScape and BioTransformer

Data analysis and peak findings of the investigated drugs and their metabolites were performed in MetaboScape with the T-ReX[®]4D algorithm applied for automatic feature extraction and alignment. The ion mobility (1/K0) and collisional cross sections (CCS) of each feature were calculated and listed in the generated feature table. Data was further evaluated using the BioTransformer tool to predict drug metabolites based on Cytochrome P450 Phase I biotransformation. All possible metabolites from enzymatic reactions of hydroxylation, N-dealkylation, Noxidation, O-dealkylation, O-Aryl demethylation and epoxidation (Figure 3). Generated chemical structures for the metabolites with different metabolism locations enabled their assignment in the acquired raw data. The postulated metabolites were verified based on mass accuracy, isotope pattern matching, and further confirmed by *in-silico* MS/MS fragment matching as well as comparison to predicted (using the CCS-Predict Pro model) and reference CCS values (Table 1).

Predictions	Mass [Da]	Formula	AQ	Reaction
🗸 Tramadol	263.18853	C16H25NO2		
Tramadol - CH₂	249.17288	C15H23NO2		N-Dealkylation of acyclic te
Tramadol + O	279.18344	C16H25NO3		N-Oxidation of aliphatic te
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of alicyclic s
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of benzene of
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of alicyclic s
Tramadol + O - C₂H ₇ N	234.12559	C14H18O3		N-Dealkylation of acyclic to
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of alicyclic s
Tramadol + O	279.18344	C16H25NO3		Aliphatic hydroxylation of
Tramadol + O	279.18344	C16H25NO3		Epoxidation of arene
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of benzene
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of benzene
Tramadol - CH₂	249.17288	C15H23NO2		O-Dealkylation
Tramadol - CH₂	249.17288	C15H23NO2		O-Aryl dealkylation not adj
Tramadol - CH2	249.17288	C15H23NO2		O-Aryl demethylation
Tramadol - CH ₂	249.17288	C15H23NO2		O-Aryl dealkylation adjacer
Tramadol + O	279.18344	C16H25NO3		Hydroxylation of alicyclic s
Tramadol - C14H18O2	45.05785	C2H7N		N-Dealkylation of acyclic to

Figure 3. Tramadol drug metabolites predicted by BioTransfomer in MetaboScape

Drug metabolites profiling and characterization

The time course of the formation of Tramadol metabolites was used as example for drug profiling and structure characterization. Tramadol contains aromatic methoxy group and an aliphatic dimethyl aminomethyl group, undergoes hepatic metabolism via CYP 2D6 and CYP 3A4 and generates major active metabolite Odesmethylation tramadol (M1) and N-desmethylation tramadol (nortramadol, M2), respectively (Figure 4), which were annotated and displayed in Figure 5 to visualize the changes in abundance with respect to time. The time course visualization feature not only allows to assess drug metabolic stability at a single time point, but also to determine changes like intrinsic clearance over time.

These two metabolites O- and N- demethylation tramadol show excellent mass accuracy, isotopic pattern and MS/MS score. The O-and N-demethylation metabolites $[M+H]^+$ have measured CCS of 160.3 Å² and 157.5 Å², respectively or 1.1% and -0.6% Δ CCS error when comparing to predicted CCS values from MetaboScape 2022. Further MS/MS spectral library annotation and *in-silico* MetFrag verification confirmed the two metabolites (Figure 6).

			Molecu
o-Desm	ethyltramado	L	C15H23
lon No	tation		Measure
	[M+H]+		160
	[M+Na]+		
	[M-H]-		
<			
-			
Name			Molecu
N-Desn	nethyltramado	ol I	C15H23
(;			
lon No	otation		Measure
	[M+H]+		157
	[M+Na]+		
	(M-H]-		
_			
-			
-			

In summary, MetaboScape 2022 enabled CCS-enabled drug metabolite profiling and identification of LC-PASEF data acquired on a timsTOF Pro for this proof of concept in vitro human liver microsomal incubation experiment. Additionally, MetaboScape 2022 allows for investigating the semi-quantitative response in time course studies, and the prediction of drug metabolites for targeted or non-targeted drug discovery.

References

(1) Djoumbou-Feunang et al.; Journal of Cheminform, 2019:11:2

(2) Rouini M. et al.; DARU Journal of Pharmaceutical Sciences, 2013, 21:17.

Conclusions

- MetaboScape[®]
- pharma research

ular Formula	[M+H]	+ Prediction	∆ CCS [%]	_(II), _
NOz		158.5	1.1	
n Desited		00 19/1		
Prediction	on ΔC	CS [%]		́То ^{(™} н
1.3 15	8.5	1.1		
- 18	181.6 -			
- 15	7.0	-		
				H ₃ C
			*	
	1			
ular Formula [M+H]+ Prediction		∆ CCS [%]	H_C	
NO2		158.5	-0.6	* \
				NH /
De l'ar		000 19/1		
ed Predict	Prediction ΔCC			
1.5 1	158.5 -0.6			но
- 1	182.4 -			
-	57.1	-		H ³ C T I V
			>	\sim
aricon	ot m	ABCIITA	d CCS ve	nredicted CCS for O-

ison of measured CCS vs. predicted CCS for O vltramadol metabolites

Local metabolite prediction by BioTransformer enabled secure drug metabolite annotation in

Multifactorial time-course experiments in MetaboScape supports semi-quantitative description of metabolic pathways in drug metabolism for

• **CCS-Predict Pro** allows automatic small molecule CCS prediction with assigned structure (InChl)

Integrated software addresses common needs for advancing pharma, metabolomics, lipidomics, nontarget screening and exposome research

PASEF and MetaboScape for Drug Metabolism