Determining Topologies of Alkylammonium Complexes of Cucurbit[6]uril Using multiCRAFTI Techniques in an FTICR Mass Spectrometer

Jamir Shrestha, Caleb Tinsley, Zixuan Feng, Andrew J. Arslanian, Mariah Pay, Brigham Pope, Tina H. M. Farzan, David V. Dearden

Introduction

- Cucurbit[6]uril (CB[6]) is known to form singly charged (1:1) and doubly charged (1:2) complexes with alkylmonoammonium ions, detected in the gas phase using FTICR.
- The alkyl chains may bind inside or outside the cage or with a part of the alkyl chain protruding. Multi-**CRAFTI** technique can be used to determine the relative collision cross-sections hence the and structures of these complexes.

Cucurbit[6]uril (CB[6]) $C_{36}H_{36}N_{24}O_{12}$ Mol. Wt. 996.295

CB[6]- top view

Theory

Figure 1. A time domain transient at different Ar pressures for [Na+Butylammonium•CB[6]]²⁺ complex.

• Larger ions collide with the neutral collision gas easily: resulting in a shorter time domain transient, which when Fourier transformed, gives a peak with larger width.

Methods

- in Ar collision gas via projection approximation.
- same center-of-mass kinetic energy.
- collision energy.

Results I: Na forces the alkyl tail out.

Figure 2. Experimental and computational cross-section ratio comparison: [Na+alkylammonium•CB[6]]²⁺ / [Na₂•CB[6]]²⁺.

*Theoretical ratios are calculated for models with alkylammonium tails in and out of the CB[6] cavity.

jamirstha@byu.edu

MMFF94 force field and IMoS were used to calculate structures and compute hard sphere collision cross sections

Experiments were performed in a Bruker APEX 47e FTICR mass spectrometer controlled using a PREDATOR data system. Multi-CRAFTI excitation wave forms were generated such that the ions of interest are excited to the

Linewidths of the ions of interest are extracted as a function of collision gas pressure and kinetic energy, enabling the measurement of relative cross sections as a function of

Results II: "Tail-Out" complexes.

Figure 3. Experimental and computational cross-section ratio comparison: [(alkylammonium)₂•CB[6]]²⁺ /[Na+alkylammonium•CB[6]]²⁺ * Theoretical ratios are calculated for models with both alkylammonium tails out of the CB[6] cavity.

Conclusions

- Metal ions like Na⁺ forces the alkylammonium tail out of the CB[6] cavity.
- Both alkylammonium tails are forced out of the cavity when a CB[6] molecule binds with two of them.
- Further research is ongoing to confirm the structure of the complexes.

Acknowledgments

- BYU Department of Chemistry and Biochemistry
- National Science Foundation

