Ion Mobility High Resolution QTOF MS - Impact of PASEF on detection of posttranslational modifications

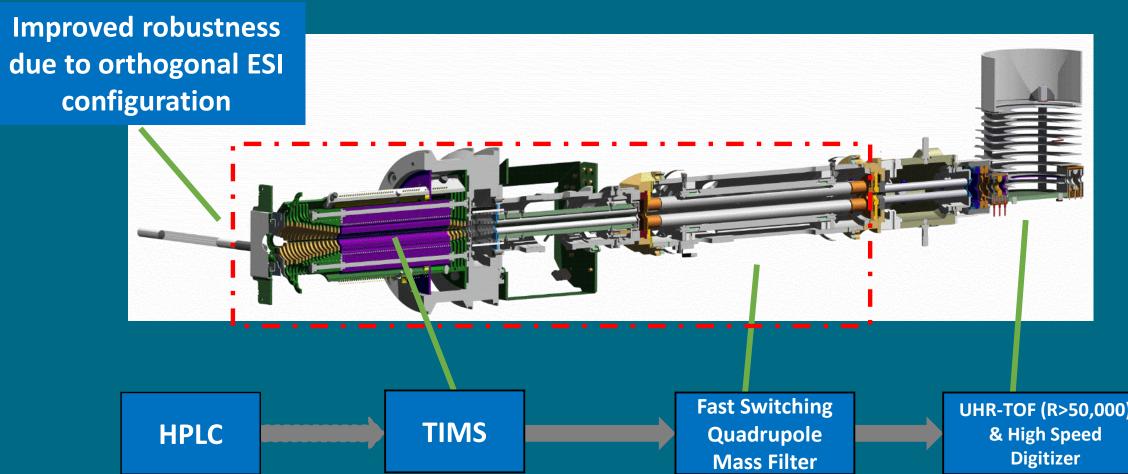
Allan Stensballe¹; Kenneth kastaniegaard¹; Thomas Bouet Guldbæk Poulsen¹; Dres Damgaard²; Claus Henrik Nielsen²

Laboratory for Medical Mass spectrometry

Department of Health Science and Technology, Aalborg University, Denmark

The field of molecular medicine is moving beyond genomics to proteomics. The goal being the characterization of the cellular circuitry and the understanding of the impact of disease and therapy on cellular networks.

NEW

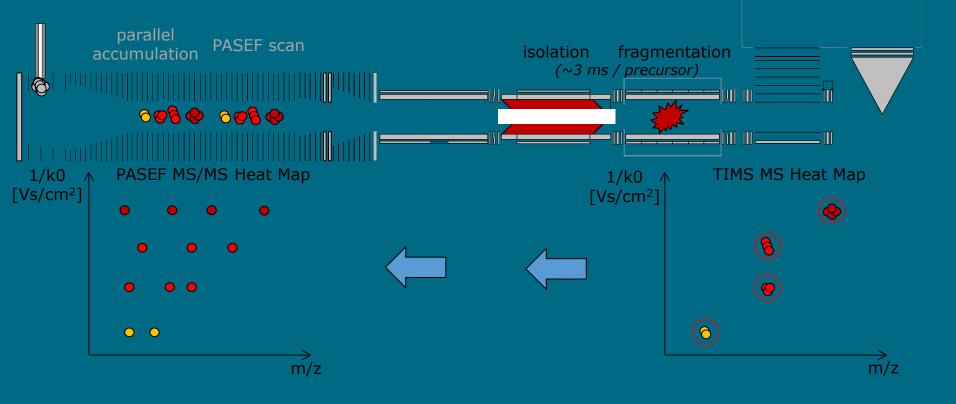

SORG UN'

T

GR

The impact of post-translational modifications in signal transduction and as triggers of autoimmune diseases is evident.

Schematics and ion-transfer system of the Bruker timsTOF PRO



Rigshospitalet

In this study we have evaluated the impact of chromatographic conditions and ability of PASEF to dig deeper into the PTMed proteome.

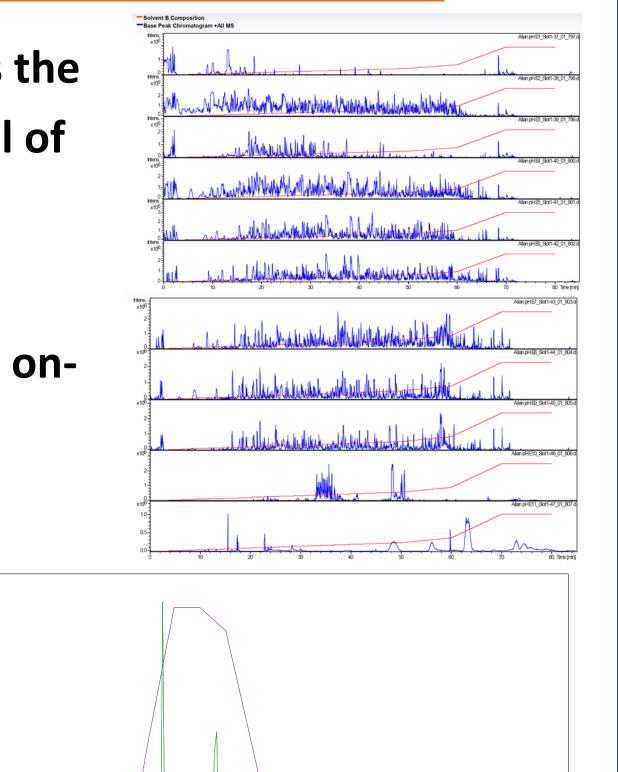
Parallel Accumulation Serial Fragmentation (PASEF) acquisition allows ions to be accumulated in discrete ion packages at chromatographic speed and high duty cycle.

PTMs in Clinical Proteomics

Post-translational modifications (PTMs) of proteins are implicated all key biological processes. Signal transduction mechanisms and enzymatic modifications in autoimmune diseases generate dynamic and sub-stoichiometric levels of PTMs. Most strategies aimed at detecting PTMs necessitate efficient enrichment for deep coverage of the proteoforms, however, limits an unbiased detection of PTMs. Multiple PTMs do not allow enrichment due to lact of methods. From tissue extracts obtained from human, mouse and pig origin we isolated the proteome. Fractions of samples were separated with or without high pl fractionation (Thermo Sci) and analyzed without PTM enrichment by UPLC-PASEF-MS (Bruker timsTOF PRO using lonoptiks 25cm Aurora nanoLC column) and other high-end MS. The proteome and protein modifications were characterized by database searching using BSI PEAKS PRO as well as MS-GF+ using high-performance supercomputing (HPC).

PSM vs PTMs

DDA vs PASEF based data acquisition **Enabled** fai and percen (data not sl


DDA VS FASLF Daseu uata acquisition						
	Peptide-Spectrum Matches		4071	36		
Enabled far higher number of PSM	Peptide sequences	107008				
and percentage of PTMs assigned	Protein groups	9619				
	Proteins	11900				
(data not shown).						
/	Deamidation	.98	NQ		101.38 2.08E4	20.75
(below) single phosphorylated	Dehydration Acetylation	-18.01 42.01	DSTY,C-term Protein N-term		84.87 1.48E4 82.32 1.43E4	0.00
tandom N/C indicating cloan naise	Pyro-glu from Q	-17.03	N-term			1000.00
tandem MS indicating clean, noise-	Citrullination	.98	R	1650	73.25 7.94E2	1000.00
less spectra of high coverage of	Formylation	27.99	K,N-term	1595	78.08 1.82E4	1000.00
iess spectra of fight coverage of	Oxidation	15.99	DKNPRY	1232	72.54 3.91E4	15.91
fragment ion spectra	Pyro-glu from E	-18.01	N-term	1139	81.31 5.51E3	1000.00
Intensity (%) LAGGSSAEALLSDLHAFAGSAAWDDSTR						
				pre[1+]]	
50-			У ₂₈			
b13(-98) b10[2+](-98) Y11[2+] b5 b8(-y8) b8 Y6 b10 200 400 600 800 1000 1200 1400 1600 1800	y20 y18 b23-NH3 b24 y21 y22 y24(- 2000 2200 2400	-98) У 25 -11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	У28(-98) 5	3000		Z

Protein fractionation

Extensive protein fractionation increases the final number of PSMs and detection level of individual PTMs.

(right) UPLC-tandemMS of pl fractions.

(below) Protein group ID number (200ng on-

21.5

Bioinformatics solutions

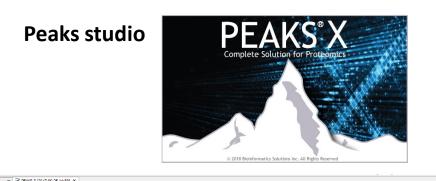
- The BSI

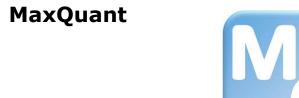
PEAKS IMS allows easy for beginners and experts alike to analyze search results.

- PASEF tandem MS spectra of PTMs are clean and without much noise and CCS values to validate PTMs.

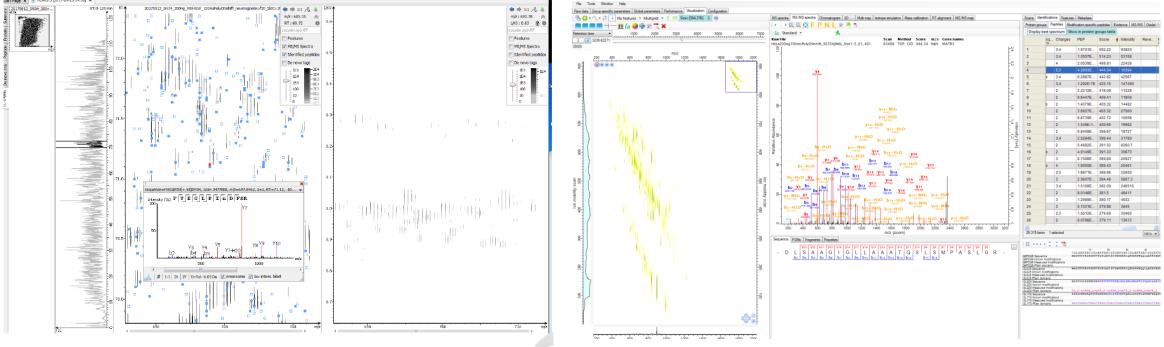
- HPC based database searching using MS-GF+ is

The BSI PEAKSX allows extraction


of accurate CCS values (1/k0)


Mass	Length	ppm 🕇	m/z	RT	1/k0
3369.7490	33	0.0	1124.2570	61.31	1.0168-1.0407
2255.1003	18	0.0	752.7074	25.69	0.9085-0.9325
2240.0110	19	0.0	747.6776	43.16	0.9660-0.9899
2041.0367	18	0.0	1021.5256	71.97	1.1662-1.1901
2038.9669	19	0.0	1020.4907	57.21	1.1413-1.1652
2029.0579	19	0.0	1015.5362	47.47	1.1480-1.1719

column load) and XIC of single peptide


Protein groups	8546	
Proteins	12715	
pH E1	498	Intens. x1ថ
pH E2	5129	2.0
pH E3	3227	
pH E4	5160	1.5
pH E5	5302	
pH E6	5129	1.0
pH E7	5096	
pH E8	4391	
pH E9	4038	0.5
pH E10	1646	
pH E11	48	0.0

feasible and fast (depending on number of nodes)

Research gate

21.1

21.2

21.3

21.4

AALBORG UNIVERSITY

DENMARK

