Single-cell equivalent sensitivity on timsTOF Pro with 35 minutes gradient time enabled by label-free reference run approach

Peter Pichler¹, <u>Goran Mitulovic²</u>, Gary Kruppa², Manfred Hecking³ and Karl Mechtler¹ ¹ IMP - Institute of Molecular Pathology, Vienna, Austria ² Bruker Daltonics GmbH, Bremen, Germany ³ Medical University of Vienna, Vienna, Austria p presenting author, Email: goran.mitulovic@bruker.com

Introduction

Single-cell proteomics requires both high sensitivity and high sample throughput, i.e. rapid LC gradients with high scanning speed mass spectrometry. Besides the dedicated timsTOF SCP (Single Cell Proteomics) instrument, which was described in a recent preprint,¹⁾ the versatile timsTOF Pro instrument, which was designed for shotgun proteomics experiments using standard sample amounts,²⁻³⁾ also offers a "high sensitivity" mode. We present a method that enables single-cell proteomics on this instrument, reasoning that concomitant search of reference samples could increase the sensitivity of peptide and protein detection in DIA (Data Independent Acquisition) measurements by the machine learning algorithms implemented in current DIA analysis software.

Methods

U3000 RSLC system

- Bruker Ten reversed-phase column
- 35 min net LC-gradient time
- direct injection (no trap column)
- UDP method for TFE rinse between LC-runs⁴⁾

timsTOF Pro mass spectrometer

- "high sensitivity" mode enabled
- data-dependent (DDA) vs. data-independent (DIA) analysis
- 1 MS + 8 DIA-PASEF scans (x 3 mobility windows), each 160ms

Data analysis software

• Spectromine 3.2 (DDA) • Spectronaut 16 (DIA)

Samples

- commercial HeLa protein digest (Pierce)
- injected amounts: 200ng, 10ng, 1ng
- quintuplicate replicates (HeLa), triplicates (blank runs)

Results

Direct-DIA analysis

Combined Direct-DIA analysis

Human+Contaminants+Yeast+E.coli

DDA analysis

"Direct DIA" with searches Spectronaut identified on average 324 protein groups in 1ng of HeLa samples. However, a considerable number of spurious protein groups was also identified in blank runs. LC-gradient time was 35 min in all cases.

A combined Direct DIA analysis of 1ng 200ng 10ng together with and "reference" DIA runs acquired with the 35 min gradient increased same identifications to 1457 protein groups for the 1ng samples (ca 4.5-fold increase).

In addition, protein identifications in blank runs were strongly reduced by injecting small amount а

We also evaluated our "reference run" human and

Finally, we compared figures of merit of our search strategy using a fasta database DIA method to the alternative approach of that comprised 10498 sequences DDA (data dependent acquisition). While from Yeast and E.coli in addition to the number of identified protein groups 20715 with 200ng HeLa in DDA analyses were only contaminant sequences. The small number of moderately smaller than with DIA, results spurious identification from the two indicate that for low sample amounts, our organisms not present in the sample "DIA reference run" approach increases the number of identified protein groups more provides further support that results of than twice. Data completeness was also obtained by our reference run approach are valid. superior with DIA (data not shown).

Trifluoroethanol (TFE) to wash the autosampler and the analytical column.⁴⁾

References

- 1. Brunner AD, Thielert M, Vasilopoulou C, Ammar C, Coscia F, Mund A, Hoerning OB, Bache N, Apalategui A, Lubeck M, Richter S, Fischer DS, Raether O, Park MA, Meier F, Theis FJ, Mann M. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol Syst Biol. 2022 Mar;18(3):e10798
- 2. Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M, Goedecke N, Decker J, Kosinski T, Park MA, Bache N, Hoerning O, Cox J, Räther O, Mann M. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018 Dec;17(12):2534-2545
- 3. Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E, Kaspar-Schoenefeld S, Lubeck M, Raether O, Bache N, Aebersold R, Collins BC, Röst HL, Mann M. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020 Dec;17(12):1229-1236
- 4. Mitulović G, Stingl C, Steinmacher I, Hudecz O, Hutchins JR, Peters JM, Mechtler K. Preventing carryover of peptides and proteins in nano LC-MS separations. Anal Chem. 2009 Jul 15;81(14):5955-60. doi: 10.1021/ac900696m.

Acknowledgements

This work was supported by WWTF grant LS20-079 "Closing the Loop in Hemodialysis" (Life Sciences 2020 - Precision Medicine) https://hd-research.net/