

BRUKER NANO ANALYTICS

In-situ SEM nanoindentation combined with 3D EBSD

Laurie Palasse, Ph.D. Senior Application Scientist, Bruker Nano Analytics

Jaroslav Lukes, Ph.D. Application Scientist, Bruker Nano Surface

In-situ SEM nanoindentation combined with EBSD

- Correlating mechanical properties with microstructural features
- Study of plastic deformation mechanisms, e.g. EBSD measurement of the deformed volume below the indent
- Investigation of residual stresses, e.g. with HR-EBSD measurement
- Tensile testing on thin lamella

In-situ SEM nanoindentation combined with 3D EBSD

In-situ nanoindentation with PI89

02 3D EBSD overview and data processing

 $\mathbf{)3}$ Application example on austenitic steel

04 Summary

BRUKER NANO ANALYTICS WEBINAR

Nanomechanical testing setup PI89 SEM PicoIndenter

BRUKER BNSM DIVISION

In-situ SEM Nanoindentation

Jaroslav Lukeš, Ph.D. Nanoindentation Applications Scientist – EMEA

Nanomechanical Instruments for Microscopes

PI 89 SEM PicoIndenter®

Intraspect360[®] for X-Ray Microscopes (XRM) Beamline/Synchrotron Sources

Hysitron PI 89 SEM PicoIndenter

B. xR Transducer with higher load – 3.5 N

- xR" Transducer- 10 mN, 500 mN and 3.5 N force and 150 mm displacement
- Max load 3.5 N and max displacement 150 um
- Displacement actuation by intrinsically displacement-controlled piezo actuator
- In load control mode, electrostatic actuation is used

Replaceable "xR" Transducer: 10 mN, 500mN and 3500 mN, 150 μm (flexure)

Variable Sample Stage

Dual configuration rotation and tilt stage

Patented in Japan and USA

2.5

Rotation and Tilt Stage – Configuration A

• 5 Degrees of Freedom for Sample Positioning

Indentation and EBSD mapping of phases of duplex steel (lower)

Particle compression and in-situ FIBing

Sample positioning towards **<u>electron column for imaging</u>**, FIB column for **<u>milling</u>**, and detectors such as EDS, BSE, EBSD, for **<u>analytical data and imaging</u>**.

Rotation and Tilt Stage – Configuration B

<image>

Tilt-Rotation of a sample – Video

Spindle-Rotation of a sample – Video

• 5 Degrees of Freedom for Sample Positioning

Example: Anisotropic indentation behavior in calcite (Courtesy; Prof. Shefford P. Baker, Cornell))

Spindle rotation of a pillar to observe other sides ⁵ um

Sample positioning towards **electron column for imaging**, detectors such as EDS, BSE, EBSD, for **analytical data and imaging**, **spindle-mode rotation of sample**.

In-Situ Testing Techniques and Applications

Fig. 6 a Load-displacement curves obtained from nano-indentation; SEM image of an indent: b on the B2 phase and c on the L12 phase

Eutectic high entropy alloy, Vahid Hasannaeimi, Aditya V. Ayyagari, Saideep Muskeri, Riyadh Salloom and Sundeep Mukherjee, 2019, npj materials degradation, **3** (2019) 1886

Integrated Accelerated Property Mapping (XPM) with PI 89

							Н	Hardness (GPa)		
۲ (μm)				naruriess						
	84.8-								4.0	
	70.0-								3.9	
									3.8	
	60.0-								3.7	
	50.0-				-				3.6	
	. 50.0								3.5	
	40.0-								3.4	
	20.0								3.3	
	30.0-								3.2	
	20.0-								0.2	
									3.1	
	10.0-								3.0	
	0.0-								2.9	
	0.0	0 5.	00 10.	00	15.00	20.00	25.00	— .	2.8	
X (um)										

XPM with PI 89 : RT Stage and EBSD

Nanoindentation Accelerated Property Mapping (XPM)

Compression

Direct Tension PTP

Bending

DMA/Fatigue

Scanning Probe Microscopy

TKD

NanoTribology

High Temperature

XPM with PI 89 : Available at High Temperature

In-Situ SEM Nanomechanics with SPM Imaging

SPM imaging and profile of an *in situ* SEM nanoindentation on bulk metallic glass

Profile across the indentation can quantify pile up volume and steps formed by slip bands.

- Topographical features can be viewed in high-resolution with secondary electron imaging in the SEM. However, quantitative topographical data is challenging.
- Accurate height information of sample features, surface roughness, pile-up or sink-in from nanoindentation.

Nanoindentation Accelerated Property Mapping (XPM)

Compression

Direct Tension PTP

Bending

DMA/Fatigue

Scanning Probe Microscopy

TKD

NanoTribology

High Temperature

Correlated XPM and EBSD

Pile-up symmetry depends on crystallographic orientation

ICAMS INSTITUTE INFORMACIONARY CENTRE FOR ADVANCED MATERIALS SIMULATION <101> Oriented grains show a 2-fold pile-up symmetry

<001> Oriented grains show a 4-fold pile-up symmetry

Inverse pole figure (IPF) orientation component uses a basic RGB colouring scheme, fit to an inverse pole figure. For cubic phases, full red, green, and blue are assigned to grains whose <100>, <110> or <111> axes, respectively, are parallel to the projection direction of the IPF.

Indent Positioning and Load Function

- Displacement Control Feedback Loop
- Peak displacement 2µm
- 5-2-5s of Load-Hold-Unload segments
- Cube Corner tip
- Indentation along the edge of sample
- ROI was defined by EBSD map before indentation

Residual Indents for 3D EBSD

- indents 12&11 made in the same grain.
- indent 11 requires greater applied force to reach the same penetration depth.

BRUKER NANO ANALYTICS WEBINAR

EBSD technique overview

BRUKER

EBSD: What for?

Understanding the material strength and deformation properties by:

- Measuring crystal orientation
- Analyzing the grain structure
- Distinguishing phases
- For quality control, phase transformation, fracture analysis, strain analysis, tectonophysics studies...

Hardware - Experimental setup

- Simultaneous 2D and 3D EDS/EBSD measurement
- Detectors in-situ tilt options to maximize measurement quality
- One software platform

ESPRIT QUBE 3D EBSD/EDS data processing

BRUKER NANO ANALYTICS WEBINAR

3D EBSD overview

EBSD is an extremely versatile tool:

- microstructure, texture (phase discrimination)
- grain boundaries, dislocations (residual stress)

3D EBSD is a specialty tool, brings the most advanced 3D insights into the deformation mechanisms of materials:

- wide range of serial section techniques (destructive)
- slice registration /realignment
- growing list of applications : 5 parameters grain boundary characterization, microstructure characterization in 3D, Nye tensor / Geometrically Necessary Dislocation analysis,

3D EBSD data processing with ESPRIT QUBE

ESPRIT QUBE:

- Advanced postprocessing capabilities for crystal plasticity studies, e.g. GND density distribution
- Multiple advanced slice realignment features
- Multiple subsetting

- sample: deformed Ti alloy (α and β phases)
- Large data cube 245 slices (35x20x20µm³)
- Serial sectioning using a PFIB-SEM with non-static 3D
- Slice preparation time: ~2min/slice
- 3D EBSD data acquisition time: ~7min/slice

3D EBSD data processing with ESPRIT QUBE

Local Average Disorientation after slice realignment & data filtering

22

3D EBSD data processing with ESPRIT QUBE

Grain Boundary network (Ti alloy) IPF and grain orientation mean (Euler coloring)

3D EBSD measurement and data processing

BRUKER NANO ANALYTICS WEBINAR

Experimental setup - indentation

indents

111

Experimental setup – 3D EBSD measurement

• Watch the recording to access the video of the 3D EBSD measurement

3D EBSD data processing

Rigid slice realignment and noise filtering applied on selected area below (~37 Millions of points)

[111]

lg(GND(LAD)) [1/m²] Iron

IPF

© 2021 Bruker

Local Average Disorientation (LAD)

LAD scalar color scheme

- 2.3 L 1 5

- 0.8

3D EBSD – Orientation Distribution (IPF)

- Close-up on the indents area plastic deformation area clearly visible
- Indent 11 (right) has a smaller plastic deformation zone. It was made in the vicinity of a grain boundary.

3D EBSD - Local Average Disorientation (LAD/KAM) and Geometrically Necessary Dislocation (GND)

• LAD : plastic deformation delimited by low angle boundaries

• GND: they are stacking up at low angle boundaries

Plastic deformation zones clearly delimited by LAD and GND distribution. Indent 11 (right) has a smaller plastic deformation zone and required more applied force because of the vicinity of a grain boundary which reduces the mobility of dislocations.

Some suggested references...

- N. Zaafarani, D. Raabe, R.N. Singh, F. Roters, S. Zaefferer, Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations, Acta Materialia 54 (2006) 1863-1876
- M. Rester, C. Motz, R. Pippan, Microstructural investigation of the volume beneath nanoindentations in copper, Acta Materialia 55 (2007) 6427–6435
- "Assessment of geometrically necessary dislocation levels derived by 3D EBSD", P.J. Konijnenberg *et al.*, Acta Mat. 99 (2015) 402–414, doi: 10. 1016/j.actamat.2015.06.051
- "3D HR-EBSD Characterization of the plastic zone around crack tips in tungsten single crystals at the micron scale "S.
 Kalácska *et al.*, Acta Mat. 200 (2020) 211-222
- "Investigation of geometrically necessary dislocation structures in compressed cu micropillars by 3-dimensional HR-EBSD" S. Kalácska *et al.*, Mat. Sci. Eng. A. 770 (2020) 138499, doi: 10.1016/j.msea.2019.138499.

BRUKER NANO ANALYTICS WEBINAR

Advanced applications: combination with OPTIMUS TKD

Tensile testing of nanowires or thin films

OPTIMUS 2 TKD Detector

- OPTIMUS 2 is an add-on option of the e-Flash EBSD detectors
- On-axis Transmission Kikuchi Diffraction
- Effective spatial resolution 1.5 nm
- ARGUS[™] imaging system with near real-time visualization

SEM PicoIndenter with OPTIMUS 2 detector

- Tensile testing of thin films
- Strain, grain structure and deformation mapping
- Suitable with Push-to-Pull device

Integration of multiple instruments OPTIMUS 2 and PicoIndenter PI 89 with Push-to-Pull device

BRUKER

Time Resolved Measurements during in-situ experiments:

• Near real-time visualization at up to 125,000 pixels/second

during in-situ tensile testing with Push-to-Pull device on PI 89

- Time resolved mapping at up to 600 points/second during insitu tensile testing – quantify every microstructural change in the sample
- Same capabilities apply to in-situ heating and electrical biasing experiments

BRUKER NANO ANALYTICS WEBINAR

Summary

Combined mechanical testing with 3D EBSD measurement allow :

- Correlating mechanical properties with the complete microstructural features (GB, twins, low angle boundary, GNDs...)
- Study of plastic deformation mechanisms, crystal plasticity
- Study the strength of heterogenous materials
- Fracture analysis (cantilever)
- Micropillar compression
- Investigation of residual stress with HR-EBSD, 3D shape of deformation zone, ...
- Understanding the role of crystal orientation and different dislocations in the plastic deformation, ...
- Further: Tensile/heating testing on thin lamella

BRUKER NANO ANALYTICS WEBINAR

BRUKER NANO ANALYTICS WEBINAR

Enabling Your Control Mode

"True Load Control"

PI89 "True Load Control" "True Deplacement Control"

Performech II

- 1.2MHz Data Sample Rate
- 78kHz Feedback Control Loop
- 38kHz Data Acquisition Rate
- 20nN Force Noise Floor
- 0.1nm Displ. Noise Floor

Displacement Control

BRUKER NANO ANALYTICS WEBINAR

Innovation with Integrity