

XFLASH® 7 DETECTOR WEBINAR SERIES PART II

Achieving sub-10 nm EDS spatial resolution on bulk specimen in SEM

Bruker Nano GmbH Am Studio 2D 12489 Berlin, Germany applications.bna@bruker.com

Presenters

Dr. Igor Németh Application Scientist, Bruker Nano Analytics

Purvesh Soni Application Scientist, Bruker Nano Analytics

Outline

- Introduction XFlash[®] 7 for SEM
 - Fast signal processing
 - Data/spectrum quality at high speeds
 - Esprit LiveMap: real time chemical imaging

XFLASH® 7 DETECTOR WEBINAR SERIES PART I Improving Efficiency with the XFlash® 7 EDS Detector Family On-demand session downloadable from www.bruker.com

- Achieving sub-10 nm EDS spatial resolution on bulk specimen in SEM
 - Spatial resolution in SEM: Influencing factors, beam diameter, kV, optimal pixel size
 - Optimal mapping settings for high resolution measurement. What to consider?
 - Application examples:
 - semiconductor structures (FinFET)
 - Ni-based single crystal superalloy

XFlash[®] 7

Fast. Precise. Reliable.

XFlash® 7 - the detector for SEM and FIB-SEM

XFlash[®] 7T - the detector for TEM and STEM

BRUKER

XFlash[®] 7 – Be faster!

With up to 1,000,000 cps the XFlash® 7 offers the highest real analytical throughput on the market for EDS detectors, meaning:

- Get best results in the shortest time
 - Fast survey maps
 - Fast particle analysis
- No risk of signal loss caused by slow read-out electronics
- Maximize your sample throughput without compromising quality
- ESPRIT LiveMap for real-time chemical imaging: use chemical information instead of BSE image signal to navigate on your sample

5

XFLASH® 7 DETECTOR WEBINAR SERIES PART II

Achieving sub-10 nm EDS spatial resolution on bulk specimen in SEM

Bruker Nano GmbH Am Studio 2D 12489 Berlin, Germany applications.bna@bruker.com

Spatial resolution

- Discern or separate distinct two features -> Spatial resolution
- Separate fine scale features -> High spatial resolution
- Fine scale/High magnification? -> Application

Sharp features – good spatial resolution

Blurred features - bad spatial resolution

Spatial resolution in SEM

Interaction volume – signal generation

Interaction volume – different materials

• Signal generation depth (interaction volume) at 15 kV for different materials

BRUKER

Interaction volume – different kVs

• Signal generation depth (interaction volume) for W at different primary energies

Z = 74

 $\rho = 19.3 \text{ g/cm}^3$ La = 8.39 keV

-114.8 nr

-57 Å nr

Interaction volume generation Si – W – Si

• 5 kV beam scanning across a 20 nm tungsten (W) layer in Silicon (Si)

Interaction volume generation Si – W – Si

• 5 kV beam scanning across a 20 nm tungsten (W) layer in Silicon (Si)

Intensity of X rays generated across Si – W – Si

• 5 kV beam scanning across a 20 nm tungsten (W) layer in Silicon (Si)

Intensity of X rays generated across Si – W – Si

5 kV

20 kV

Radial distribution of x-ray intensity vs. Beam diameter

Pixel size

© 2022 Bruker

Image drift in SEM – Types

Beam conditions

Pixel dwell time •

Charge

Charge accumulation drift – Beam conditions

Charge accumulation drift – Pixel dwell time/scan speed

- Longer dwell time (Higher charge accumulation)
- Shorter dwell time (Lower charge accumulation)

more sample drift

less sample drift

Drift Co. – a must!

Drift compensation and SEM image shift

- Image drift is corrected using the SEM image overlay compensation.
- Pixel XY position retained on a feature or interface
- In-lens detector input can also be used (SE contrast is too low)
- Reduced area mapping better drift correction range

Additional precautions

- Sample mounting must be strong/stiff/steady
- Let stage and beam stabilize for 20 min
- Vibration damping system
- Evening measurements (low disturbance)
- C coating (~10 nm) for charging samples

High spatial resolution EDS measurements - Checklist

- Diameter of primary electron beam
- Pixel and map size avoiding oversampling
- Charging samples Starting with low kV and low beam current settings
- Drift correction
- Clean sample, holders and stage

micro-XRF map of a fingerprint

Minimize beam/carbon contamination on the samples!!

Application examples

1. CPU (FinFET)

Deprocessed CPU (FinFET) – PFIB delayering

Sample courtesy: Dr. Andrey Denisyuk, TESCAN ORSAY HOLDING, a.s, Brno, CZ

Deprocessed CPU (FinFET) – PFIB delayering

Sample courtesy: Dr. Andrey Denisyuk, TESCAN ORSAY HOLDING, a.s, Brno, CZ

5 kV, 300kx MAG, Below M0

MAG: 300,000x HV: 5 kV

5 kV, 300kx MAG, Exactly M0

MAG: 300,000x HV: 5 kV

5 kV, 300kx MAG, Above M0

MAG: 300,000x HV: 5 kV

Automatic peak deconvolution

Automatic peak deconvolution – Above M0

Measurement parameters

Below M0

EDS MEASUREMENT PARAMETERS

Measurement time	60 min
Count rate	15500 cps
Probe current	380 pA
Dead time	18%
Total counts	4.6E+7 (46M)
H-FOV	1000 nm
Map size	300 x 225 px

Exactly M0

	EDS MEASUREMENT	PARAMETERS
Meas	urement time	55 min
Count	t rate	15200 cps
Probe	ecurrent	350 pA
Dead	time	17%
Total	counts	4.2E+7 (42M)
H-FO	\checkmark	1000 nm
Map s	size	300 x 225 px

Above M0

EDS MEASUREMENT PARAMETERS

Measurement time	60 min
Count rate	15600 cps
Probe current	390 pA
Dead time	18%
Total counts	4.6E+7 (46M)
H-FOV	1000 nm
Map size	300 x 225 px

Drift correction

Drift correction

20 kV, 300kx MAG, Above M0

200 nm

EDS MEASUREMENT PARAMETERS

Measurement time	30 min
Count rate	50700 cps
Probe current	290 pA
Dead time	27%
Total counts	6.6E+7 (66M)
H-FOV	1000 nm
Map size	250 x 187 px

BRUKER

20 kV, 750kx MAG, Above M0

EDS MEASUREMENT PARAMETERSMeasurement time21 minCount rate50500 cpsProbe current220 pADead time27%Total counts3.7E+7 (37M)H-FOV1000 nmMap size250 x 187 px

20 kV, 1Mx MAG, Above M0

EDS MEASUREMENT PARAMETERS	
Measurement time	577 s
Count rate	50900 cps
Probe current	210 pA
Dead time	27%
Total counts	2.1E+7 (27M)
H-FOV	300 nm
Map size	200 x 150 px

5 kV, 1Mx MAG, Below M0

EDS MEASUREMENT	PARAMETERS

Measurement time	545 s
Count rate	15600 cps
Probe current	390 pA
Dead time	18%
Total counts	7E+6 (7M)
H-FOV	300 nm
Map size	200 x 150 px

Application examples

2. Ni based single crystal super alloy

10 mm

MAG: 50,000 x HV: 5 kV

EDS MEASUREMENT PARAMETERS

Measurement time	15 min
Count rate	39000 cps
Dead time	23%
Total counts	3.6E+7 (36M)
Magnification	50,000 x (FOV 2.4 µm)
Map size	600 x 450 px

EDS MEASUREMENT PARAMETERS

Measurement time	35 min
Count rate	20,000 cps
Dead time	12%
Total counts	3.4E+7 (34M)
Magnification	50,000 x (FOV 2.4 µm)
Map size	500 x 375 px

3 kV maps: FEG-SEM 1 vs. FEG-SEM 2

Ch 1

MAG: 50,000 x HV: 3 kV

HV:3 kV WD:8.6 mm Px: 4.8

MAG: 50,000 x HV: 3 kV

MAG: 100,000 x HV: 3 kV

3 kV measurement at 100,000x magnification (FEG-SEM 2)

Gamma - P1 Gamma prime - P2

MAG: 20,000 x HV: 25 kV

1 µm

EDS MEASUREMENT PARAMETERS

Measurement time	30 min
Count rate	119,000 cps
Dead time	32%
Total counts	1.46E+8 (146M)
Magnification	20,000 x
Map size	1000 x 750 px

Detector used?

EDS/SEM SYSTEM CONFIGURATION

Detector type	Bruker 7 th Gen XFlash
Resolution	126 eV @Mn Ka
Window	SLEW AP3.3

Results from windowless 100 mm² RaceTrack detector?

Summary - I

Interaction volume

Material density

Beam footprint

Pixel/map size

Charging due to higher dwell time

Charging due to beam conditions

Active drift correction

Avoid contamination

Summary - II

5 kV – 300,000x

20 kV - 300,000x

5 kV – 1,000,000x

5 kV – 100,000x

20 kV – 1,000,000x

25 kV – 20,000x

Thank you!

Questions?

Please type in the questions in the **Q&A box** and press **Send**.