Towards a DART-MS Technique with SPME that Provides a Rapid Screening Approach to PFAS Analysis

Overview:

ionense

Polyfluoroalkyl substances (PFAS), also known as "forever chemicals," > DART-AccuTOF EIC of extracted PFOA (left) and PFOS (right) with ¹³C-labeled internal standards (IS) underneath. have become of major interest due to their presence in the environment \blacktriangleright Each concentration was analyzed in triplicate. 12 samples were ionized in ~1.8 min. as well as potential health implications. These fabricated compounds are > Area counts of the 4 PFAS analytes were normalized against the corresponding IS. widely used in industrial settings in addition to consumer products. The > The carboxylic acid analytes (PFOA and GenX) ionized more efficiently and displayed stronger linearity when increased awareness of PFAS has led to a considerable need in analytical compared to the sulfonic acid analytes (PFOS and PFBS). analysis. As the published methods require significant extraction and LC/MSMS we are investigating the potential for direct analysis of **PFOA** 25 ppb 1 **PFOS** 25 ppb 1 EIC: 498.9206-498.9406 / Toledo_QS_card_3 / DART- / DART 325 C / 1 ppb SPME devices after and following up those screens with DART-MSMS **1 ppb** in order to confirm the identity of the various PFAS and PFOS that 200 ppt might be detected in the screen. Coated glass capillary (CGC) devices as **10 ppb** 200 ppt **10 ppb** developed by Cody and Makenia (*RCMS* 2019)¹ were initially use to for extraction and analysis. As the range of POP's increases the use of more robust extraction devices with higher capacity was enabled using HLB-¹³C₈-PFOA (2.5ppb) ¹³C₈-PFOS (2.5ppb) WAX phases.

Figure 1: QuickStripTM module presentation automated robotics JumpShot with equipped DART-MS

Methods:

The SPME devices were coated with hydrophilic-lipophilic balance-weak anion-exchange/polyacrylonitrile (HLB-WAX/PAN) (J. Chromatogr. A **2021**)². PFAS standards (see below) were extracted and diluted to a range of 25ppb – 200ppt. For analysis of extracted samples, a DART ionization source was interfaced to a JEOL AccuTOF-MS. DART parameters were: negative ionization mode, 325°C, and 2 sec Helium gas pulses per sample. Data processing was completed using MSAXEL. The extraction of PFAS samples was demonstrated to be efficient and comprehensive. DART and central-composite design (CCD) experiments were performed with a LTQ XL linear ion trap MS (Thermo Scientific, San Jose, CA).

- ➤ 4 PFAS compounds: Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS) and GenX at 200 ppt, 1 ppb, 10 ppb and 25 ppb
- > 3 Isotopically labeled internal standards: ${}^{13}C_8$ PFOA, ${}^{13}C_8$ -PFOS, ${}^{13}C_3$ -GenX at 2.5 ppb
- Extraction and desorption time 20 min
- \blacktriangleright Desorption solution 80:20 (MeOH:H₂O, v:v) with 0.05% NH₄OH
- (1) Cody, R.; Maleknia, S. D. Rapid Commun. Mass Spectrom. 2020, 34 (23).
- (2) Olomukoro, A. A.; Emmons, R. V.; Godage, N. H.; Cudjoe, E.; Gionfriddo, E. J. Chromatogr A **2021**, *1651*, 462335.

William L. Fatigante¹; Ronald V. Emmons²; Aghogho A. Olomukoro²; Emanuela Gionfriddo², Brian D. Musselman¹ ¹IonSense, Inc., Saugus, MA; ²Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH

(3)Pump Speed(L)

(1)Electric Grid Voltage(L

(2)Plasma Temperature(L)

Experimental:

		Level			Star Points (α = 1.68	
Variable	Code	Low (-)	Central (0)	High (+)	-α	+α
Electric Grid	X ₁	100	200	300	33	367
Plasma Temperature	X ₂	175	275	375	100 (107)	450 (442)
Pump Setting	X ₃	-4	0	4	-6.7	6.7

Conclusions:

> The QuickStrip module with DART-MS analysis permits rapid screening of various PFAS analytes.

> Samples extracted using HLB-WAX phases can be immediately ionized after desorption.

 \triangleright When compared to traditional LCMS testing, using **DART-MS** reduces:

- The time required for individual sample analysis
- The cost and amount of organic consumables needed

> By adjusting DART parameters, we can promote greater ionization of different PFAS classes (i.e., carboxylic acid v. sulfonic acid groups), creating optimal DART methods for each.

 \blacktriangleright Method has potential for screening of >1000 samples per hour against large databases with no solvent or chromatographic materials

On-Going Work:

- \succ The coupling of DART and a triple quadrupole MS, such as the Bruker EVOQ Elite, can aid in the high throughput screening and identifying various PFAS and PFOS with its high MRM speed.
- proof-of-principal, quick \blacktriangleright As calibration curve (100ppt – 25ppb) was collected in under one minute using the MRM transition: 413.2 > 369.1(see below)

Acknowledgement:

• The authors would like to thank Dr. Chip Cody (JEOL USA) for the time and assistance in using their JEOL AccuTOF-MS and data processing.