Parallel accumulation – serial fragmentation combined with data-independent acquisition (diaPASEF): Bottom-up proteomics with near optimal ion usage

Florian Meier¹, Stephanie Kaspar-Schönefeld², Andreas-David Brunner¹, Max Frank³, Annie Ha³, Isabell Bludau¹, Eugenia Voytik¹, Markus Lubeck², Oliver Räther⁴, Ruedi Aebersold^{5, 6}, Ben C. Collins⁵, Hannes L. Röst³, Matthias Mann^{1, 7}

¹Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; ²Bruker Daltonik, Bremen, Germany; ³Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON; ⁴Bruker Daltonik GmbH, Bremen, Germany; ⁵Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; ⁶Faculty of Science, University of Zürich, Zurich, Switzerland; ⁷NFF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark

Highlights

Standard DIA acquistion schemes utilize only a few percent of the ion current by cycling through segments of the precursor *m/z* range.

diaPASEF makes use of the correlation of molecular weight and ion mobility in a trapped ion mobility mass spectrometer (timsTOF Pro).

Synchronizing ion mobility separation and precursor selection allows to sample up to 100% of the peptide precursor ion current.

cursor identification.

Single run analysis of whole proteome digests and mixed organism samples demonstrates deep proteome coverage and exceptional sensitivity.

Learn more:

Meier *et al., bioRxiv* 2019 http://biorxiv.org/content/10.1101/656207v2

MAX-PLANCK-GESELLSCHAFT

Ion mobility-aware targeted data extraction increases the specificity for pre-

