New prm-PASEF® for highly multiplexed targeted acquisition in clinical samples.

Antoine Lesur1, Marta Mendes1, Jens Decker2, Sven Brehmer3, Pierre-Olivier Schmit2 and Gunnar Dittmar1
1Luxembourg Institute of Health, Strassen, Luxembourg
2BrukerDaltonik GmbH, Bremen, Germany
3Bruker Daltonics S.A., Wissembourg, France

Introduction
We developed a prm-PASEF targeted acquisition method that fully exploits the multiplexing capability of the TIMS-TOF Pro, allowing multiple peptides to be sequentially measured from a single ion mobility scan with no sensitivity loss. We evaluated the performance of this prm-PASEF method using AQUA peptides spiked in a Hela cell lysate sample. The testing of this method on clinical research samples has been delayed due to the COVID-19 situation.

Methods
Samples were separated by nano-HPLC (nanoElute, Bruker Daltonics) on 250 mm pulled emitter columns (IonOpticks, Australia) with a 30 min gradient. Peptides were analyzed on a timS-TOF Pro instrument (Bruker Daltonics) operated in prm-PASEF acquisition mode (prototype). Data were processed with Skyline-daily.

Results
Fig. 1: prm-PASEF, a new highly parallelized acquisition method
a) Selection of the targeted peptide precursor ions during a single PRM-PASEF event. Up to 11 precursors can be selected within a 100ms IMS scan and consecutively fragmented in the collision cell. High selectivity in the precursor’s selection is obtained by combining the ion mobility (green bars) with the quadrupole isolation windows (blue bars)

b) Representation of PASEF-PRM isolation windows in the ion mobility (1/K0) and chromatography retention time (s) dimensions

c) Visualization of the MS cycle time across the chromatography separation (1 frames =100ms)

Fig. 2: Quantification performance
a) Representative prm-PASEF traces of the peptide ATVYQGER. Peak area ratios (heavy/light) were calculated to normalize the MS signal

b) Three replicates of the calibration curve were acquired, the accuracy of each calculated concentration level and the relative standard deviation were calculated.

As quality control, the concentration of two curves were back-calculated with the linear regression of the first curve (green trend line). Limits of quantification (LOQ) were defined as lowest concentration point within 80%<accuracy<120% associated to a signal higher that the mean(blanks)+3×SD(blanks)

Conclusions
• prm-PASEF takes advantage of the trapped ion mobility technology for the targeted proteomics analysis.

• The sensitivity and selectivity of the acquisition method is improved by the ion mobility filtering and time focusing effect that happens during a PASEF acquisition.

• The high multiplexing capacity of the prm-PASEF maximizes the number of peptides quantified in a single analysis while keeping an excellent chromatographic peak profiling.

• prm-PASEF delivers accurate quantification for a large number of targets over sharp chromatographic peaks and is compatible with high-throughput chromatography for the screening of large clinical sample collections.