
Analysis of Histones from HEK293T Cells using a QTOF with Trapped Ion Mobility and PASEF Workflows

ASMS 2019, TP 642

Shourjo Ghose¹, Matt Willetts¹, Miranda Gardner², Michael Freitas², Gary Kruppa¹ ¹Bruker Daltonics, Billerica, MA, USA, ²Department of Cancer Biology and Genetics, The Ohio State University, Columbus Ohio

Introduction

Histones form the fundamental unit of the eukaryotic nucleosome consisting of 146 bp of DNA wrapped around protein octamer units. Histones contain diverse post translational modifications that dictate all critical chromatin derived functionalities. Bottom-up approaches to studying histones result in a mixture of isobaric species arising from multiple modifications on the same molecule, making them challenging to analyze via routine LC-MS/MS. Here, we describe the utility of trapped ion mobility on a QTOF, to separate isobaric species leading to the detection of modforms that might otherwise go unidentified. Utilizing a combination of low sample load and PASEF workflows, we detect over 2000 peptide sequences and achieve increased depth and coverage of histone modforms without specialized chromatography and data interpretation.

References

Kelleher et al.; Curr Opin Chem Biol 2016, 33:142-150 Garcia et al.; Methods Enzymol 2017, 586:359-378

Methods

Histones were acid-extracted from Human embryonic kidney 293T cells and derivatized with propionic anhydride/ACN (1:3) pre- and postdigestion with trypsin. Peptides were separated on a 1.6µm C18 25cm x 75µm column (Ionoptiks) using a nanoElute nano LC (Bruker Daltonics) coupled to a trapped ion mobility equipped Q-TOF mass spectrometer (timsTOF Pro). 270ng of sample was injected and resolved over a 90-minute gradient ranging from 2% to 25% Acetonitrile (0.1% FA) at 400nl/min. Data derived from PASEF scans were recorded using otofControl and HyStar (Bruker Daltonics) software. Acquired data were analyzed via Data Analysis (Bruker Daltonics) and PEAKS (Bioinformatics Solutions, Inc) software platforms.

HEK293T Cell Lysate:270ng Sample Load on Column

1500

1000

Peptide Sequences

HEK 293T Cell Lysate

Fig. 2. Protein Groups, unique peptide sequences and

PSM identified from 270ng of HEK293T cell digests 90

Peptide Spectrum

Matches

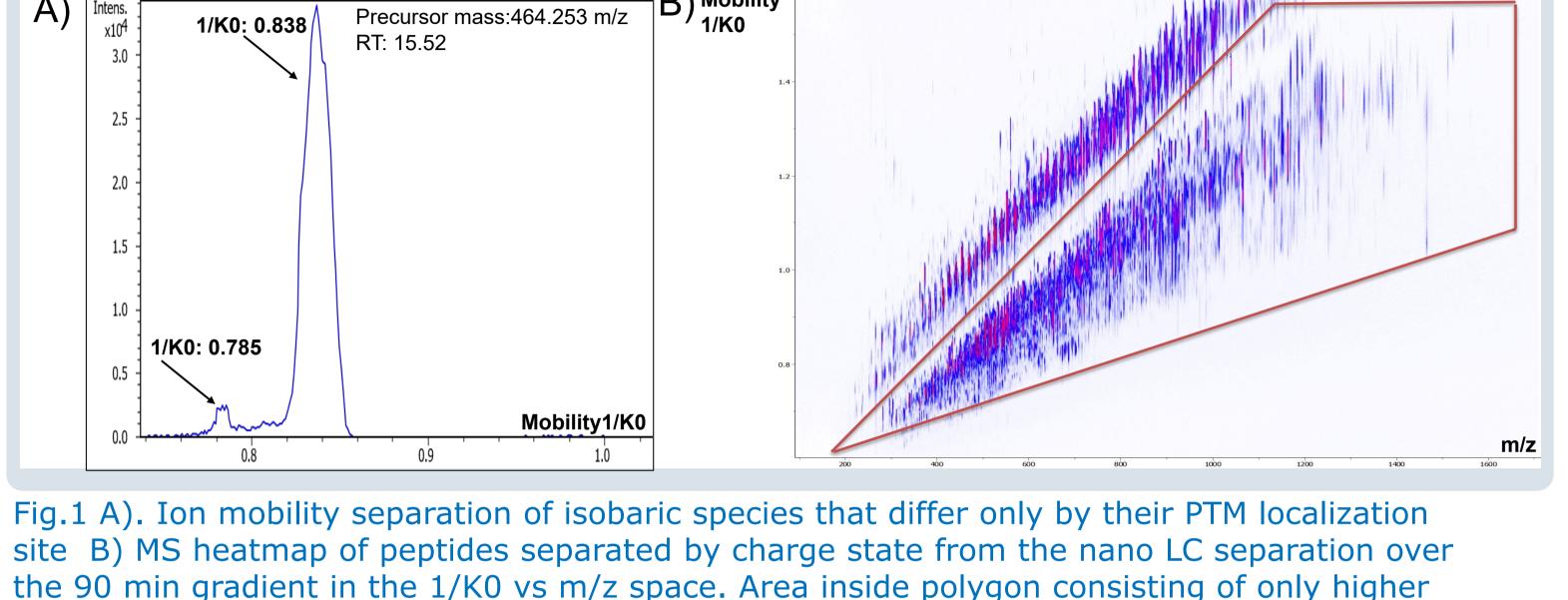
HEK 293T Cell Lysate

4000

Protein Groups

HEK 293T Cell Lysate

min gradient.


250

200

150

100

50

the 90 min gradient in the 1/K0 vs m/z space. Area inside polygon consisting of only higher charged species selected for MS/MS.

| 1:1 | 2X | 2Y | ErrTol: 0.05 Da preprocess low intens. label alignment er uence=G(+56.03)K(+14.02)QGGK(+56.03)AR, Precursor Id 17712, m/z=464.2531, z=2, RT=1... ensity (%) gk Q G G k A R recursor mass:464.253 PTM: Propionylation; Methylation # | 1:1 | 2X | 2Y | ErrTol: 0.05 Da preprocess low intens. label alignment

Fig. 3. Co-eluting peptides that differ only by the PTM localization site are separated by TIMS, resulting in nonchimeric MS/MS spectra that enable localization of the different sites of modifications

Resolution of Co-eluting Isobaric Peptides

Co-eluting peptides that are isobaric or have overlapping precursor ion isotope envelopes can be resolved using Trapped Ion Mobility Spectrometry resulting in clean MS/MS spectra.

Figure 3 shows an example where two co-eluting peptides with the same sequence but different modification sites were separated based on their collisional cross sections enabling discrete MS/MS spectra which were confidently assigned to different peptides by PEAKS database search.

This would not be possible on a conventional non-TIMS mass spectrometer

Conclusions

Results

Histone ID with PASEF

The increased peak capacity from the

provided by the TIMS and increased

method enables very large numbers

More than 200 protein groups, 2000

peptide sequences and 6000 peptide

spectrum matches (PSM) (at 1% FDR

fusion) were identified from 270ng of

as estimated by PEAKS using decoy

of Histone identifications from very

extra dimension of separation

sequencing speed of the PASEF

low sample amounts.

protein (Figure 2).

- PASEF on the timsTOF Pro identified more than 200 protein groups from a 90 min gradient.
- Almost 2000 peptides were confidently identified in a 90 min gradient.
- Extra dimension of separation provided by TIMS allowed resolution of co-eluting, isobaric peptides

timsTOF Pro